BZOJ 5507: [gzoi2019]旧词 LCT】的更多相关文章

和之前那个 [LNOI]LCA 几乎是同一道题,就是用动态树来维护查分就行. code: #include <bits/stdc++.h> using namespace std; #define N 50006 #define mod 998244353 #define ll long long #define lson t[x].ch[0] #define rson t[x].ch[1] #define get(x) (t[t[x].f].ch[1]==x) #define isrt(x)…
[BZOJ5507][GXOI/GZOI2019]旧词(树链剖分,线段树) 题面 BZOJ 洛谷 题解 如果\(k=1\)就是链并裸题了... 其实\(k>1\)发现还是可以用类似链并的思想,这个东西本质上就是对于当前的一个\(x\),考虑对于其他所有点的贡献,而他们的\(LCA\)一定是\(x\)到根节点链上的一个点.那么对于某个\(x\)的祖先节点,除了\(x\)所在的子树内,其他的所有子树内的点全部会产生这个点的深度的\(k\)次方的贡献.\(k=1\)的时候这个东西可以直接做的原因是因为…
题目地址:P5305 [GXOI/GZOI2019]旧词 这里是官方题解 \[\sum_{i \leq x}^{}\ depth(lca(i,y))^k\] \(k = 1\) 求的是 \(\sum_{i \leq x}^{}\ depth(lca(i,y))\) ,一堆点然后每个点和 \(y\) 求 \(lca\) 然后深度求和. 总体思路是把 \(lca\) 的值摊派到这个点到根的路径上(这个东西也叫树上差分?),再离线解决所有询问. 维护一个点权数组 \(sum\) ,初始为 \(0\)…
题目链接: [GXOI/GZOI2019]旧词 对于$k=1$的情况,可以参见[LNOI2014]LCA,将询问离线然后从$1$号点开始对这个点到根的路径链修改,每次询问就是对询问点到根路径链查询即可. 可以发现,如果一个点的贡献被记入答案,那么这个点到根的路径上所有点的贡献都会被记入答案. 那么对于$k>1$的情况,只要每次将路径上点$u$的权值都$+1$变成每次将路径上点$u$的权值都$+(dep[u]^k-(dep[u]-1)^k)$即可. 同样用线段树维护树剖序的区间权值和即可. #in…
Descriptioin 浮生有梦三千场 穷尽千里诗酒荒 徒把理想倾倒 不如早还乡 温一壶风尘的酒 独饮往事迢迢 举杯轻思量 泪如潮青丝留他方 --乌糟兽/愚青<旧词> 你已经解决了五个问题,不妨在这大树之下,吟唱旧词一首抒怀.最后的问题就是关于这棵树的,它的描述很简单. 给定一棵 \(n\) 个点的有根树,节点标号 \(1 \sim n\),11 号节点为根. 给定常数 \(k\) . 给定 \(Q\) 个询问,每次询问给定 \(x,y\). 求: \(\sum\limits_{i\leq…
前置芝士:[LNOI2014]LCA 要是这题放HNOI就好了 原题:\(\sum_{l≤i≤r}dep[LCA(i,z)]\) 这题:\(\sum_{i≤r}dep[LCA(i,z)]^k\) 对于原题,我们需要把每个询问拆成1~l-1 & 1~r再进行差分(所以这题帮我们省去了一个步骤) 先考虑\(k=1\)原题 我们先转化题意 \(dep[lca]\)\(\\)==\(\\)\(dis[1][lca]+1\)\(\\)==\(\\)\(lca->1\)的点数 所以我们每一个点(x)对答…
https://www.cnblogs.com/Gloid/p/9412357.html差分一下是一样的问题.感觉几年没写过树剖了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #d…
传送门 先考虑\(k=1\),一个点的深度就是到根节点的路径上的点的个数,所以\(lca(x,y)\)的深度就是\(x\)和\(y\)到根路径的交集路径上的点的个数,那么对于一个询问,我们可以对每个点\(i\le x\),把\(1\)到\(i\)路径上所有点\(+1\),然后查询\(1\)到\(y\)的点权和就行了.现在有多组询问,路径修改可以树剖+在以\(dfn\)序为下标的线段树上修改,然后套可持久化线段树保存每个\(i\)的线段树状态,每次在对应线段树上区间查询即可.可持久化线段树的区间修…
很像LNOI 2014 LCA那道题. 同样的套路,离线以后直接扫描线. k=1的话就是原题. 考虑一般情况. 原本的做法是对x到根的这条链做一下区间+1操作,目的是为了是的在深度为i的位置得到的贡献是i. 因此,我们只需要构造出一个任意一个位置都满足前缀和为i^k的序列即可. 然后每次把这个序列加到这条链上,由于每个点的深度固定,因此每个位置每次增加的数字也是固定的,可以区间打标记线段树维护. 考虑怎么构造这个序列,显然直接把1^k,2^k,3^k,4^k......差分就可以了. #incl…
考虑k=1的做法:这是一道原题,我还写过题解,其实挺水的,但当时我菜还是看题解的:https://www.cnblogs.com/hfctf0210/p/10187947.html.其实就是树上差分后值为1. 考虑k>1的做法:其实可以再次树上差分,给每个点i赋值v[i]=dep[i]k-dep[i-1]k,然后还是和原来一样开一棵线段树,记录一个val[rt]表示当前节点内区间v值的和,以及sum[rt]表示区间值.修改时打标记,只需要将sum[rt]+=v*val[rt],lazy[rt]+…