题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑b​i=1∑k​j=1∑i​[lcm(i,j)==k] 1<=a<=b<=10111<=a<=b<=10^{11}1<=a<=b<=1011 题目分析 令f(n)=∑i=1n∑j=1i[lcm(i,j)==n]\large f(n)=\sum_{i=1}^n\sum_{j=…
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \frac{a}{gcd}, \frac{b}{gcd}\),然后\(\mu\)代入,就是 \[ \sum_{d=1}^{\sqrt{n}}\mu(d) \sum_i \sum_j \sum_k [ijk \le \frac{n}{d^2}] \] 问题就是怎么求后面的式子了 一开始我是 \[ f(n) = \s…
参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}[\frac{i*j}{gcd(i,j)}\leq n] \] \[ \sum_{d=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{d}\right \rfloor}\sum_{j=1}^{\left \lfloor…
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体推导过程参考:51nod1222 最小公倍数计数 过程运用到的技巧: 1.将所有i和j的已知因子提取出来压缩上届. 2.将带有μ(k)的k提到最前面,从而后面变成单纯的三元组形式. 最终形式: $$ans=\sum_{k=1}^{\sqrt n} \mu(k)  \sum_{d}    \sum_{i} \s…
1682 中位数计数基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数. 现在有n个数,每个数都是独一无二的,求出每个数在多少个包含其的区间中是中位数. Input 第一行一个数n(n<=8000) 第二行n个数,0<=每个数<=10^9 Output N个数,依次表示第i个数在多少包含其的区间中是中位数. Input示例 5 1 2 3 4 5…
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ Ans=\sum_{g=1}g\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{n}{g}}ij\sum_{d|i,d|j}\mu(d)\\ =\sum_{g=1}g\sum_{d=1}^{\frac{n}{g}}d^2\mu(d)S^2(\frac{n}{dg})…
51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N](由于sum[i]会小于0,所以要加N)记录在j<i的情况下sum[i]是否出现过,如果在j>=i的情况下,sum[i]还出现过,那么就代表有一个区间满足条件. 代码: #include<bits/stdc++.h> using namespace std; #define ll lo…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去\([1,a)\)中的个数. \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\left[\frac{ij}{(i,j)}\leq n\right]\\ =&\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac nd\rig…
1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000000007的结果. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 50000) 第2 - T + 1行:T个数A[i](A[i] <…
题目来源: Project Euler 基准时间限制:6 秒 空间限制:131072 KB 分值: 640  定义F(n)表示最小公倍数为n的二元组的数量. 即:如果存在两个数(二元组)X,Y(X <= Y),它们的最小公倍数为N,则F(n)的计数加1. 例如:F(6) = 5,因为[2,3] [1,6] [2,6] [3,6] [6,6]的最小公倍数等于6.   给出一个区间[a,b],求最小公倍数在这个区间的不同二元组的数量. 例如:a = 4,b = 6.符合条件的二元组包括: [1,4]…