Gcd HYSBZ - 2818 (莫比乌斯反演)】的更多相关文章

链接 题意很简洁不说了 题解:一开始我想直接暴力,复杂度是O(log(1e7)*sqrt(1e7))算出来是2e9,可能会复杂度爆炸,但是我看时限是10s,直接大力莽了一发暴力,没想到就过了= = 就是先打出1e7的素数表,然后挨个算即可 //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast,no-stack-protector") //#pragma GCC targ…
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直接提出来 \[\sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]\] 很明显 设 \[f(x)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==x]\] \[g(x)=\sum_{x|d}f(d)\] \[g(…
Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\(1 \leq x,y \leq n\)且 \(p\)是质数 思路 \(g\left(x\right)\) 表示 \(gcd\left(a, b\right) | x\) 的对数 \(f\left(x\right)\) 表示 \(gcd\left(a, b\right) = x\) 的对数 根据莫比…
题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h> #define N 100001 typedef long long LL; }; ; int mu[N]; LL f[N],ff[N]; //缩短时间 /* 莫比乌斯函数mu[i]的定义: 1. 如果 i 是素数,那么mu[i]为-1; 2. 如果 i 是由多个不同的素数组成的,那么mu[i]为-1…
[题目]GCD of Divisors [题意]给定f(n)=Σd|n gcd(d,n/d)的前缀和F(n),n=10^15. [算法]莫比乌斯反演 [题解]参考:任之洲数论函数.pdf 这个范围显然杜教筛也是做不了的,而且考虑直接化简f(n)也遇到了困难,所以考虑将前缀和的Σ一起化简. $$F(n)=\sum_{i=1}^{n}\sum_{d|i}(d,\frac{i}{d})$$ 这一步很常见的是第一重改为枚举倍数,但这样化简后面就推不下去了. 这道题必须最后转成$\sigma_0(n)$才…
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/peng-ym/p/8647856.html 今天刚开始学莫比乌斯反演,先据我所了解的说一下. 首先是莫比乌斯函数. 1,mu(x).当x为1时,mu(1)等于1. 2,当x为素数时,mu(x)=-1. 3,当x能唯一分解成多个不同的素数相乘的时候(不能有重复的素数)mu(x)=(-1)的k次方,k…
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, b N) = d\) 3. 恰好有k个位置 \(bi!=ai\) 求对每个d,有多少种满足条件的序列 分析:对于前两个条件,就是单纯的莫比乌斯反演. 令\(F(d) = [d|gcd(b1...bN)]\) \(f(d) = [gcd(b1...bN)]=d]\) 则$f(n) = \sum_{x…
链接 对于gcd(i,j)的位置来说,对答案的贡献是2*(gcd(i,j)-1)+1,所以答案ans ans=Σ(1<=i<=n)(1<=j<=m)2*(gcd(i,j)-1)+1 ans=2*Σ(1<=i<=n)(1<=j<=m)gcd(i,j)-n*m 前者可以通过莫比乌斯反演来计算,便很容易得出答案 //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimiz…
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]​$ 题解: 解法一:莫比乌斯反演套路题 其实这样就可以了,但是还可以优化一下子 设​​T=dp ​ 整除分块就好了,其实这就和 yy的gcd 一样了 解法二:欧拉函数 考虑上面的第一个式子​可以化简成 ​ tot是n以内质数的数量 这是因为考虑到每次都两次计算了​$\varphi(1)$…
点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),询问\(\sum_{i=1}^xa_i\). 对于修改操作的推式子 莫比乌斯反演真是个神奇而又有趣的东西...... 考虑修改操作是将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),则若\(d\not| k\),显然是不存在满足条件的\(i\)的,可以直接忽略这一修改操作(忘记判断结果调到心态爆炸......) 否则,也就相当于: \[a_i+=v\…