KNN-k近邻算法】的更多相关文章

在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门算法. 参考内容如下:http://www.cnblogs.com/charlesblc/p/6193867.html 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于…
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如有新的数据加入,需要判断这个新的数据属于数据集中的哪一类 我们添加一个新的数据,重新绘制散点图 No.6. kNN的实现过程——计算x到训练数据集中每个点的距离 No.7. kNN的实现过程——使用argsort来获取距离x由近到远的点的索引组成的向量,进行保存 No.8. kNN的实现过程——指定…
K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据.通常K不大于20.最后选择K个最相似数据中出现次数最多的分类.最为新的数据分类. 可是K~近邻算法必须保存所有的数据集.假设训练数据集非常大,必须使用打量的存储空间.此外,因为必须对数据集中每一个数据集计算距离值,实际使用起来会非常耗时间.…
KNN项目实战——手写数字识别 1. 介绍 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法.它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系.输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是…
目标:预测未知数据(或测试数据)X的分类y 批量kNN算法 1.输入一个待预测的X(一维或多维)给训练数据集,计算出训练集X_train中的每一个样本与其的距离 2.找到前k个距离该数据最近的样本-->所属的分类y_train 3.将前k近的样本进行统计,哪个分类多,则我们将x分类为哪个分类 # 准备阶段: import numpy as np # import matplotlib.pyplot as plt raw_data_X = [[3.393533211, 2.331273381],…
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import operator from collections import Counter #KNN需要测试集,训练集,标签和k值 #测试集:你需要测试的数据 #训练集:给定的标准数据 #标签:每个标准数据的类别 #k值 :测试集和训练集相比较下前K个最相识的训练集的值 # 用KNN算法找出测试集的类别 #…
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据的…
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import pand…
1. K近邻算法(KNN) 2. KNN和KdTree算法实现 1. 前言 K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用,就是"物以类聚,人以群分".比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择…
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集就是模型本身: 思想极度简单: 应用数学知识少(近乎为零): 效果少: 可以解释机械学习算法使用过程中的很多细节问题 更完整的刻画机械学习应用的流程: 2)思想: 根本思想:两个样本,如果它们的特征足够相似,它们就有更高的概率属于同一个类别: 问题:根据现有训练数据集,判断新的样本属于哪种类型: 方…