AT2000 Leftmost Ball】的更多相关文章

设\(f[i][j]\)表示当前有\(i\)个白球,一共放完了\(j\)种球 显然有\(j <= i\) 对于每个状态目前已经放下去的球是固定了的,那么考虑转移 放白球 从\(f[i - 1][j]\)转移 放没有出现过的球 \((n - j + 1) * f[i][j - 1] * C(k - 2, n * k - i - (j - 1) * (k - 1) - 1)\) 第二种的C是钦定第一个球放在已经构造好了的合法序列的后面第一个空位,然后剩下的\(k-2\)个球放在剩下的\(n * k…
传送门 解题思路 设\(f[i][j]\)表示填了\(i\)个白色,\(j\)种彩色的方案数,那么显然\(j<=i\).考虑这个的转移,首先可以填一个白色,就是\(f[i][j]=f[i-1][j]*(n-i+1)\).第二种情况是填一个彩色,这里有一点需要注意,不能直接用组合数,这样的话会有重复,我们可以强行安排一个顺序,这种颜色的第一个被变成了白色,第二个就直接跟在上一种彩色的后面,这样就可以做到不重不漏了,那么第二个转移就是\(f[i][j]=f[i][j-1]*C(n*k-(i+(j-1…
题面 给你n种颜色的球,每个球有k个,把这n*k个球排成一排,把每一种颜色的最左边出现的球涂成白色(初始球不包含白色),求有多少种不同的颜色序列,答案对1e9+7取模 解法 设\(f(i,\;j)\)表示在这些\((n \times k个)\)位置上已经放了i个白球,j种其他颜色的球.(i<j) \(f(i,\;j) = f(i-1,\; j)+f(i ,\;j-1)\times (n-j+1)\times \dbinom{k-2}{n*k-i-(j-1)*(k-1)-1}\) 第一部分: 加一…
Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N colors. The colors are numbered 1 through N.He will arrange all of the balls in a row from left to right, in arbitrary order. Then, for each of the N col…
[agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色,所以无论何时,\(0\)号颜色的数量不能少于其他颜色的数量. 可以设状态\(f[i][j]\)表示前面一共放了\(i\)个\(0\)号颜色的球,而一共出现了\(j\)种其他颜色的球,根据上面的东西,可以知道\(i\ge j\).每次转移我们分成两种考虑.第一种就直接在后面接一个\(0\)号颜色的球…
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数DP [题解]只看黑体字部分即可. 自己考虑了几种计数方案,都不能实现.一种从左到右,但要记录每种球剩余多少,不可行.一种从右到左枚举白球包含区间填充,但因为只看白球,每种颜色没有关键球,会有重复统计的问题. 计数的关键在于白球的原色不重要以及每种颜色关注最左端的球(这里不含变成白球的球). 本题既然nk…
Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite N colors. The colors are numbered 1 through N. He will arrange all of the balls in a row from left to right, in arbitrary order. Then, for each of th…
题目链接 AtCoder:https://agc002.contest.atcoder.jp/tasks/agc002_f 洛谷:https://www.luogu.org/problemnew/show/AT2000 Solution 对于一个任意的颜色序列,它合法当且仅当任意一个前缀序列都要满足白色数量大于等于颜色种类数(不包括白色). 设\(f[i][j]\)表示当前填了\(i\)个白球,\(j\)种其他颜色的球的方案数,显然当\(i<j\)时\(f[i][j]=0\). 考虑转移,我们考…
貌似哪里讲过这题..总之当时掉线了(理解能力又差水平又低选手的日常).. 看看题目,应该是DP. 尝试了几次换状态,毫无思路.那我们就来继续挖掘性质吧...为了更直观,我们令第i个出现的球颜色就是i(最后乘个阶乘就成).那么有: 1122->0102 13223312->00203312 122132441231344->002102041231344 我们发现,i个0将序列分成i段,第i段的数字由1...i组成.考虑从1到n依次塞数字,数字i要塞在第i个0后面,因此会有这样的现象.我们…
题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\)取模. \(n,m\leq 2000\) 题解 我们称颜色为\(1\sim n\)的球为正常颜色的球,颜色为\(n+1\)的球为白球. 我们先钦定每种颜色最左边那个球的出现顺序为\(1\)~\(n\),从左往右的第\(i\)个白球的球对应着第\(i\)个颜色. 考虑从后往前放,设当前序列最前面有\…