MapReduce MapReduce的基本定义及过程 搭建开发环境 代码实例及运行程序 MapReduce开发接口介绍 1. MapReduce的基本定义及过程 MapReduce是面向大数据并行处理的计算模型.框架和平台,其资源调度由Yarn完成,任务资源隐含了以下三层含义: 1)MapReduce是 一个基于集群的高性能并行计算平台(cluster Infrastructure). 2)MapReduce是 一个并行计算与运行软件框架(SoftWare Framework) 3)MapRe…
FusionInsight大数据开发 FusionInsight HD是一个大数据全栈商用平台,支持各种通用大数据应用场景. 技能需求 扎实的编程基础 Java/Scala/python/SQL/shell常见命令 掌握FusionInsight 熟悉业务开发 大数据应用开发流程 业务分析和方案设计 应用开发 应用调试 应用部署 应用开发关键点 账号 安全认证 场景约束 应用开发指南--调试 常规手段 协助资料 保障团队 总结: 认证是应用开发的关键点,要根据业务需求,申请合适账号,完成安全认证…
第15章 大数据与MapReduce 大数据 概述 大数据: 收集到的数据已经远远超出了我们的处理能力. 大数据 场景 假如你为一家网络购物商店工作,很多用户访问该网站,其中有些人会购买商品,有些人则随意浏览后就离开. 对于你来说,可能很想识别那些有购物意愿的用户. 那么问题就来了,数据集可能会非常大,在单机上训练要运行好几天. 接下来:我们讲讲 MapRedece 如何来解决这样的问题 MapRedece Hadoop 概述 Hadoop 是 MapRedece 框架的一个免费开源实现. Ma…
本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…
系列文章: 大数据系列:一文初识Hdfs 大数据系列2:Hdfs的读写操作 大数据谢列3:Hdfs的HA实现 通过前文,我们对Hdfs的已经有了一定的了解,本文将继续之前的内容,介绍Yarn与Yarn在MapReduce 2的应用 MapReduce1 作业流程 在介绍Yarn之前,我们先介绍一下Mapreduce1作业流程. 有了这个基础,再去看看采用Yarn以后的MapReduce2到底有啥优势也许会有更好的理解. 首先先介绍一下相关的几个实体: Client:负责提交 MapReduce…
Hive应用开发 了解Hive的基本架构原理 掌握JDBC客户端开发流程 了解ODBC客户端的开发流程 了解python客户端的开发流程 了解Hcatalog/webHcat开发接口 掌握Hive开发规则 1. 了解Hive的基本架构原理守护进程: HiveServer(Thrift/Compiler) webHcat MetaStore Hive的应用场景 数据挖掘 非实时分析 数据汇总 作为数据仓库 2. 掌握JDBC客户端开发流程JDBC开发-参数初始化 设置ZooKeeper地址 krb…
HDFS应用开发 HDFS(Dadoop Distributed File System) HDFS概述 高容错性 高吞吐量 大文件存储 HDFS架构包含三部分 Name Node DataNode Client HDFS数据写入流程 HDFS应用开发方式 HDFS Client Java/shell/Web UI Kerbors控制 HDFSJava应用开发 下载客户端/获取样例工程/生产样例工程/导入eclipse/编码 Java开发流程 初始化 目录操作 文件读取 文件写入/追加( 初始化…
Streaming应用开发 掌握Streaming基本业务开发流 熟悉Streaming常用API接口使用 掌握Streaming业务设计基本原则 了解Streaming应用开发环境 了解CQL开发流及使用 Streaming的定义 Streaming基于开源Storm,是一个分布式.实时计算框架.Streaming在开源Storm的基础上增加了持续查询语言CQL.增强了安全性和可靠性. 事件驱动 连续查询 数据不存储.先计算 实时响应,低延迟 CQL(Continuous Query Lang…
hadoop 的计算特点:将计算任务向数据靠拢,而不是将数据向计算靠拢. 特点:数据本地化,减少网络io. 首先需要知道,hadoop数据本地化是指的map任务,reduce任务并不具备数据本地化特征.      通常输入的数据首先将会分片split,每个分片上构建一个map任务,由该任务执行执行用户自定义的map函数,从而处理分片中的每条记录.      那么切片的大小一般是趋向一个HDFS的block块的大小.为什么最佳的分片大小是趋向HDFS块的大小呢?是因为这样能够确保单节点上最大输入块…
原文链接:http://www.d1net.com/bigdata/news/345893.html 先简单的做个自我介绍,我是云6期的,黑马相比其它培训机构的好偶就不在这里说,想比大家都比我清楚: 经常遇到有人问我大数据前景如何.大数据和Android.iOS对比怎么样等一些问题,为解决大家的困惑,抽时间写了这篇文章,简单对比一下大数据和移动开发的前景,给大家做个参考. 可能很多人都还很困惑,什么是大数据,其实可以简单的这么理解:大数据就是对大量数据进行有效处理的一种解决方案:因为随着数据量的…
第十五章 大数据与Maprudece 一.引言 实际生活中的数据量是非常庞大的,采用单机运行的方式可能需要若干天才能出结果,这显然不符合我们的预期,为了尽快的获得结果,我们将采用分布式的方式,将计算分布到不同的机器上.Mapreduce就是一个典型的分布式框架,Hadoop则是用java编写的一个Mapreduce实现. 分布式和并行的区别在于分布式它将数据分布到不同的机器上,而并行只是将数据分布到同一簇中的不同节点上,它们的区别主要体现在物理载体层面上. 二.Mapreduce简介 Mapre…
本章内容我们学习一下 MapReduce 中的 Shuffle 过程,Shuffle 发生在 map 输出到 reduce 输入的过程,它的中文解释是 “洗牌”,顾名思义该过程涉及数据的重新分配,主要分为两部分:1. map 任务输出的数据分组.排序,写入本地磁盘 2. reduce 任务拉取排序.由于该过程涉及排序.磁盘IO.以及网络IO 等消耗资源和 CPU 比较大的操作,因此该过程向来是“兵家必争”之地,即大家会重点优化的一个地方,因此也是大数据面试中经常会被重点考察的地方.本文力求通俗.…
最近在学习大数据相关的东西,开这篇专题来记录一下学习过程.今天主要记录一下MapReduce执行流程解析 引子(我们需要解决一个简单的单词计数(WordCount)问题) 1000个单词 嘿嘿,1000单词还不简单,我们直接一句shell搞定 cat file | tr ' ' '\n' | sort | uniq -c | sort -rk1 | head -n 20 1000G 感觉良好,写个简单的程序也很好解决. 1000*1000G 有点懵逼了. 1000*1000*1000G 这时候就…
上一章的 MapReduce 应用中,我们使用了自定义配置,并用 GenericOptionsParser 处理命令行输入的配置,这种方式简单粗暴.但不是 MapReduce 应用常见的写法,本章第一部分将介绍 MapReduce 应用常见的写法,并详细介绍自定义配置以及命令行选项,通过自定义配置我们可以灵活的控制 MapReduce 应用而不需要修改代码并打包.第二部分将介绍开发 MapReduce 应用的单元测试,单元测试的重要性不言而喻,是每个程序员必备技能. 带有自定义配置的 MapRe…
Spark应用开发 要求: 了解Spark基本原理 搭建Spark开发环境 开发Spark应用程序 调试运行Spark应用程序 YARN资源调度,可以和Hadoop集群无缝对接 Spark适用场景大多数现有集群计算框架如MapReduce等基于从稳定存储(文件系统)到稳定存储的非循环数据流,数据重用都是基于磁盘的,执行效率比较低.与传统的MapReduce任务频繁读写磁盘数据相比,基于内存计算的Spark则更适合应用在迭代计算,交互式分析等场景. Spark应用运行流程--关键角色 Client…
Before:前提:hadoop集群应部署完毕. 一.实战科目:做一个Map Reduce分布式开发,开发内容为统计文件中的单词出现次数. 二.战前准备 1.本人在本地创建了一个用于执行MR的的文件,文件中有209行,每行写了"这是一个测试文件"的句子. 2.将该文件上传至HDFS中.你可以使用idea中的插件上传.也可以使用HDFS的可视化页面上传.也可以使用HDFS的命令上传,都可以.目的达到就行. 3.准备好开发环境,准备开发. 三.开战! 1.打开idea,创建com.test…
HBase应用开发 HBase的定义 HBase是一个高可靠.高性能.面向列.可伸缩的分布式存储系统. 适合于存储大表数据,可以达到实时级别. 利用Hadoop HDFS 作为其文件存储系统,提供实时的读写的数据库系统. 利用ZooKeeper作为协同服务. HBase架构 HBase的适用场景 海量数据 高吞吐量 需要在海量数据中实现高效的随机读取 需要很好的性能伸缩能力 能够同时处理结构化和非结构化的数据 不需要完全拥有传统关系型数据库所具备的ACID特性 HBase应用开发流程 制定业务目…
Flume应用开发 要求: 了解Flume应用开发适用场景 掌握Flume应用开发 Flume应用场景Flume的核心是把数据从数据源收集过来,在送到目的地.为了保证输送一定成功,发送到目的地之前,会先缓存数据,待数据真正的到达目的地后,删除自己缓存的数据.Flume采用流式方法采集和传输数据,程序配置好后,不需要外部条件触发下,一直监控数据源,源源不断地采集.传送数据到目的地. 主要应用于一下几种场景: 将分布式节点上大量数据实时采集.汇总和转移 将集群内.外地本地文件.实时数据流采集到Fus…
Oozie应用开发 要求: 了解Oozie应用开发适用场景 掌握Oozie应用开发 熟悉并使用Oozie常用API Oozie简介 Oozie是一个Hadoop作业的工作流调度管理系统 Oozie工作流(workflow)是放置在控制依赖DAG(有向无环图)中的一组动作(Action)集合,控制依赖可确保后续操作在见面的操作已经成功完成后才会启动. Oozie的协调作业(Coordinator)是通过时间(频率)和有效数据来触发当前的Oozie工作流. Oozie支持多种Hadoop作业(包括:…
Redis应用开发 要求: 了解Redis应用场景 掌握Redis二次开发环境搭建 掌握Redis业务开发 Redis简介 Redis是一个基于网络的,高性能key-value内存数据库 Redis根memcached类似,不过数据可持久化,而且支持的数据类型很丰富.支持在服务端计算集合的并.交和补集等,还支持多种排序功能. Redis使用场景有如下几个特点: 高性能 低延迟 丰富数据结构存取 支持持久化 Redis应用场景介绍Redis提供了灵活多变的数据结构和数据操作,主要应用于如下场景:…
SparkStreaming概述 SparkStreaming是Spark核心API的一个扩展,它对实时流式数据的处理具有可扩展性.高吞吐量.可容错性等特点. SparkStreaming原理 SparkStreaming接收实时的输入数据流,然后将这些数据切分为批数据供Spark引擎处理,Spark引擎将数据生成最终的结果数据. 使用DStream从Kafka和HDFS等源获取连接的数据流.DStream是一系列连续的RDD组成. SparkStreaming数据源 基本源:HDFS等文件系统…
Kafka应用开发 了解Kafka应用开发适用场景 熟悉Kafka应用开发流程 熟悉并使用Kafka常用API 进行Kafka应用开发 Kafka的定义Kafka是一个高吞吐.分布式.基于发布订阅的消息系统Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展 容错性好 Kafka的适用场景 适用于离线和在线的消息消费 已对接组件 Streaming.Spark.Flume 使用Kafka的好处 解耦--使得消息生产.消费系统能够独立变更 可靠--有效解决单点故障引发系统不可用…
sorl应用开发 要求: 了解Solr应用开发适用场景 熟悉Solr应用开发流程 熟悉并使用Solr常用API 理解Collection设计基本原则 应用开发实践 Solr简介 Solr是一个高性能,基于Lucene的全文检索服务,也可以作为NoSQL数据库使用. Solr对Lucene进行了扩展,提供了比Lucene更为丰富的查询语句,同时实现了可配置.可扩展,并对查询性能进行了优化,还提供了一个完善的功能管理界面. SolrCloud是从Solr 4.0 版本开始发出的具有开创意义的分布式索…
前几章我们介绍了 Hadoop 的 MapReduce 和 HDFS 两大组件,内容比较基础,看完后可以写简单的 MR 应用程序,也能够用命令行或 Java API 操作 HDFS.但要对 Hadoop 做深入的了解,显然不够用.因此本章就深入了解一下 MapReduce 应用的运行机制,从而学习 Hadoop 各个组件之间如何配合完成 MR 作业.本章是基于 Hadoop YARN 框架介绍,YARN(Yet Another Resource Negotiator)是 Hadoop 的集群资源…
本文主要介绍国内实时通讯行业现状,文章最早发表在我们的微信公众号上,详见这里,欢迎关注微信公众号blackerteam,更多详见www.blackerteam.com 这几年移动互联网发展势头很猛,与之相应的就是实时通讯需求增加,但这都只是主观感受,缺乏数据证明,但今天我想到其实看webrtc的开发热度就可以说明很多问题,因为现在不管是搞pc还是移动端的实时通讯开发,基本上都是在用webrtc,他很具有代表性. 不过问题来了不管是刚接触还是接触webrtc很久的人可能都对国内webrtc应用现状…
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上.例如处理爬取得到的文档.网页请求日志来计算各种衍生数据,如倒排索引,网页文档的各种图结构表示,从每个主机上爬取的文档数,在某一天最频繁的查询的集合. MapReduce 是为处理和生成大数据集的编程模式和相应的实现.用户指定一个 map 函数来处理一个键值对来生成一个键值对…
1.Shuffle [从mapTask到reduceTask: Mapper -> Partitioner ->Combiner -> Sort ->Reducer] mapper对job任务进行键值对构建并写入环形内存缓冲区[缓冲区满了,map停止直到全写入磁盘],大小100MB(io.sort.mb),一旦达到0.8(io.sort.spill.percent)读入量,即将内存内容经过partitioner分区和sort排序,和combiner合并写入到磁盘一个溢写出文件目录下…
一 MapReduce入门 MapReduce定义(简单来说就是hadoop的数据分析核心,理解其中的原理,则可以分析聚合一切需求) Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架. Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上. MapReduce优缺点 优点 1)MapReduce 易于编程.它简单的实现一些接口,就可以完成一个分布式程序,这个分布式…
操作背景 jdk的版本为1.8以上 ubuntu12 hadoop2.5伪分布 安装 Hadoop-Eclipse-Plugin 要在 Eclipse 上编译和运行 MapReduce 程序,需要安装 hadoop-eclipse-plugin,可下载 Github 上的 hadoop2x-eclipse-plugin(备用下载地址:http://pan.baidu.com/s/1i4ikIoP). 下载后,将 release 中的 hadoop-eclipse-kepler-plugin-2.…
一 概述 YARN是一个资源管理.任务调度的框架,采用master/slave架构,主要包含三大模块:ResourceManager(RM).NodeManager(NM).ApplicationMaster(AM). >ResourceManager负责所有资源的监控.分配和管理,运行在主节点: >NodeManager负责每一个节点的维护,运行在从节点: >ApplicationMaster负责每一个具体应用程序的调度和协调,只有在有任务正在执行时存在. 对于所有的applicati…