最小二乘法 及python 实现】的更多相关文章

 python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share   机器学习,统计项目联系:QQ:231469242 # -*- coding: utf-8 -*- import numpy as np import…
参考   最小二乘法小结     机器学习:Python 中如何使用最小二乘法 什么是” 最小二乘法” 呢 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小. 原则:以” 残差平方和最小” 确定直线位置 (在数理统计中,残差是指实际观察值与估计值之间的差) 数学公式: 基本思路:对于一元线性回归模型, 假设从总体中获取了 n 组观察值(X1,Y…
  简单线性回归(最小二乘法)¶   0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt   1.导入数据¶ In [15]: points = np.genfromtxt("data.csv",delimiter=",") #points #提取points中的两列数据,分别作为x,y x=points[:,0]; y=points[:,1]; #用plt画出散点图 plt.scat…
  1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一点”视角与“多点→一线”视角 最小二乘法非常简单,我把它分成两种视角描述: (1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解: (2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参…
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一点”视角与“多点→一线”视角 最小二乘法非常简单,我把它分成两种视角描述: (1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解: (2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参数k…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来).梯度下降法特点:越接近目标值,步长越小,下降速度越慢.直观上来看如下图所示: 这里每一个圈代表一个函数梯度,最中心表示函数极值点,每次迭代根据当前位置求得的梯度(用于确定搜索方向以及与步长共同决定前进速度)和…
正在学习<用python做科学计算>,在练习最小二乘法时遇到matplotlib无法显示中文的问题.查资料,感觉动态的加上几条语句是最好,这里贴上全部的代码. # -*- coding: utf-8 -*- """ Created on Wed Aug 10 23:20:26 2016 @author: Administrator """ import numpy as np from scipy.optimize import le…
之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法. 言归正传,什么是"最小二乘法"呢? 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误…
下面展示利用Python实现基于最小二乘法的线性回归模型,同时不需要引入其他科学计算以及机器学习的库. 利用Python代码表示如下: #首先引入数据集x,和y的值的大小利用Python的数据结构:列表,来实现. y=[4,8,13,35,34,67,78,89,100,101] x=[0,1,2,3,4,5,6,7,8,9] #然后再引入Python当中的绘图库,用于检测我们利用线性回归得到的结果是否正确 from matplotlib.font_manager import FontProp…
上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个说法是否真正的成立其实很有其它的一些考虑因素在里面,以下给出我个人的一些观点: 1. 首先,在讨论最小二乘法和梯度下降对某数据集进行线性拟合的结果是否相同的问题之前,我们应该需要确保该数据集合的确符合线性模型,如果不符合那么得出的结果将会是非常有意思的, 该种情况在之前的博客中已有介绍,下面给出网址…
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据集进行线性拟合,下面上代码: 最小二乘法: #!/usr/bin/env python #encoding:UTF-8 import numpy as np import matplotlib.pyplot as plt N=10 X=np.linspace(-3, 3, N) Y=(X+10.0)…
该文为个人学习时的学习笔记.最小二乘法在统计学中需要验证数据的多重共性性等问题,需要做相关的假设检验,这里我们假设一切为理想状态. 最小二乘法   一个简单的应用就是进行线性模型的拟合,一般情况下我们有一组数据(即数据集)比如二维数据,(x, y), x为横坐标数值, y为纵坐标数值, 这里我们可以假设该模型符合一个多项式的表达,本文中我们假设该模型可以使用一个带有常数项的16维模型,即包含15个未知参数的模型来表示. 本文中采用50个数据点,每个数据点都符合一个包含15个未知参数的模型,使用最…
2019/3/25 真的,当那个图像出现的时候,我真的感觉太美了. 或许是一路上以来自我的摸索加深的我对于这个模型的感受吧. 二次函数拟合--最小二乘法公式法 与线性回归相似,对二次函数进行拟合某种意义上也只是加了一个函数,虽然求解的方程变得更加繁琐,需要准备的变量也增加到了七个. 思路有借鉴于:最小二乘法拟合二次曲线 C语言 为了更好的理解回归问题中最小二乘法的求偏导过程,这次我选择自己手打公式. 大概流程如下 但是到此处之后便被这三个繁琐的方程给难倒了,虽然肯定可以说是能强解,但是感觉就是不…
2019/3/24 线性回归--最小二乘法公式法 暂时用python成功做出来了图像,但是其中涉及到的公式还是更多的来自于网络,尤其是最小二乘法公式中的两个系数的求解,不过目前看了下书高数也会马上提及(虽然可能不会讲这两个公式),但是运用的知识其实还是目前能够接受的:偏导,二元方程.乍一看其实也没什么,只是由于有了求和符号的干扰让计算显得复杂. 最小二乘法-公式推导 该博客中对其的推导看起来比较简洁容易接受,其中结尾公式的计算不难让人想到线性代数中的向量乘积运算,但是那样的表示方法我并不熟练,等…
计算最小二乘法求目标函数的系数,部分代码来源于张若愚老师的<Python科学计算> 题目 某检测装备输入数据: x:0.9, 2.5, 3.3, 4.5, 5.7, 6.9 g:1.1, 1.6, 2.6, 3.2, 4.0, 6.0 假设输出最大值为6.0,最小值为0 试用最小二乘法,求其线性度和灵敏度 现在放上代码 import numpy as np from scipy import optimize x = np.array([0.9, 2.5, 3.3, 4.5, 5.7, 6.9…
机器学习使用线性回归方法建模时,求损失函数最优解需要用到最小二乘法.相信很多朋友跟我一样,想先知道公式是什么,然后再研究它是怎么来的.所以不多说,先上公式. 对于线性回归方程\(f(x) = ax + b\),由最小二乘法得: \[a = \frac{\sum (x_{i}-\overline{x})(y_{i}-\overline{y})}{\sum (x_{i}-\overline{x})^{2}}\] \[b = \overline{y}-a\overline{x}\] 式中,\((x_{…
2019/3/30 二元线性回归--矩阵公式法_又名:对于python科学库的糟心尝试_ 二元线性回归严格意义上其实不过是换汤不换药,我对公式进行推导,其实也就是跟以前一样的求偏导并使之为零,并且最终公式的严格推导我大概也只能说是将将理解,毕竟最初的矩阵一开始都不太清楚应该是什么样子的,其中,Coursera的课程起到了非常显著的帮助. 其实这个部分我并不想写太多,因为理解并不是十分透彻,总体来讲,感觉就是一个公式的事情,其中对于python数据类型以及python库函数的使用反而耗费的时间更多…
1.移动最小二乘法介绍 为了更好地对数据量大且形状复杂的离散数据进行拟合,曾清红等人[1]开发出一种新的算法——移动最小二乘法.这种新的最小二乘算法为点云数据的处理提供了新的方法.使用点云数据拟合曲面时,由于点云的数据量大.形状复杂的特点,如果使用传统的最小二乘法拟合可能会得到病态的曲面方程,从而导致较大的误差.而使用移动最小二乘法拟合点云不仅能够减少误差,提升局部的准确率,还能避免分块拟合和平滑化的过程.下图为子区域的划分示意图. 通过某点确定一个子区域,在该区域内,移动最小二乘法是根据区域内…
#-*-coding:UTF-8-*- # Created on 2015年10月20日 # @author: hanahimi import numpy as np import random import matplotlib.pyplot as plt def randData(): # 生成曲线上各个点 x = np.arange(-1,1,0.02) y = [2*a+3 for a in x] # 直线 # y = [((a*a-1)*(a*a-1)*(a*a-1)+0.5)*np.…
求解非线性超定方程组,网上搜到的大多是线性方程组的最小二乘解法,对于非线性方程组无济于事. 这里分享一种方法:SciPy库的scipy.optimize.leastsq函数. import numpy as np from scipy.optimize import leastsq from math import sqrt def func(i): x,y,z = i return np.asarray(( x**2-x*y+4, x**2+y**2-x*z-25, z**2-y*x+4, x…
参考:系统辨识与自适应控制MATLAB仿真(修订版) 庞中华 崔红 仿真实例2.5 import numpy as np import matplotlib.pyplot as plt from mxulie import M_sequences plt.rcParams['font.sans-serif'] = ['Yahei consolas hybrid'] #plt.rcParams['axes.unicode_minus']=False if __name__ == '__main__…
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理.     常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其…
如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便.python在下表中以模块.的方式引用,部分模块并非原生模块,请使用 pip install * 安装:同理,为了方便索引,R中也以::表示了函数以及函数所在包的名字,如果不含::表示为R的默认包中就有,如含::,请使用 install.packages("*") 安装. 连接器与io 数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracl…
看机器学习看到了回归函数,看了一半看不下去了,看到能用方差进行函数回归,又手痒痒了,自己推公式写代码验证: 常见的最小二乘法是一阶函数回归回归方法就是寻找方差的最小值y = kx + bxi, yiy-yi = kxi+b-yi方差为∑(kxi + b - yi )^2f = k^2∑xi^2 + b^2 + ∑yi^2 +2kb∑xi - 2k∑xi*yi - 2yib求极值需要对其求微分,因为是二元函数,因此使用全微分公式,其极值点应该在两个元的偏微分都为0处δf/δk = 2k∑(xi^2…
回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被…
剪枝 由于悲观错误剪枝 PEP (Pessimistic Error Pruning).代价-复杂度剪枝 CCP (Cost-Complexity Pruning).基于错误剪枝 EBP (Error-Based Pruning).最小错误剪枝 MEP (Minimum Error Pruning)都是用于分类模型,故我们用降低错误剪枝 REP ( Reduced Error Pruning)方法进行剪枝.它的基本思路是:对于决策树 T 的每棵非叶子树s, 用叶子替代这棵子树.如果s 被叶子替代…
连接器与io 数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracle cx_Oracle ROracle MongoDB pymongo RMongo, rmongodb ODBC pyodbc RODBC IO类 类别 Python R excel xlsxWriter, pandas.(from/to)_excel, openpyxl openxlsx::read.xlsx(2), xlsx::read.xlsx(2) c…
对于样本数据的散点图形如函数y=ax2+bx+c的图像的数据, 在python中的拟合过程为: ##最小二乘法 import numpy as np import scipy as sp import matplotlib.pyplot as plt from scipy.optimize import leastsq ''' 设置样本数据,真实数据需要在这里处理 ''' ##样本数据(Xi,Yi),需要转换成数组(列表)形式 Xi=np.array([1,2,3,4,5,6]) #Yi=np.…
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y…