AI模型训练/算法评估 测试员】的更多相关文章

背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练,I/O 的性能都会显著影响整体 pipeline 的效率,甚至是最终的模型质量. 我们也逐渐看到容器化成为 AI 训练的趋势,利用容器可以快速弹性伸缩的特点,结合公有云的资源池,能够最大化资源利用率,为企业大大节约成本.因此也就诞生了类似 Kubeflow 和 Volcano 这样的开源组件,帮助…
前言 4 月热播的韩剧<王国>,不知道大家有没有看?我一集不落地看完了.王子元子出生时,正逢宫内僵尸作乱,元子也被咬了一口,但是由于大脑神经元尚未形成,寄生虫无法控制神经元,所以医女在做了简单处理后,判断不会影响大脑.这里提到了人脑神经元,它也是 AI 神经网络的研究起源,具体展开讲讲. 人脑中总共有 860 亿个神经元,其中大脑皮层有 160 亿个神经元.大脑皮层的神经元数量决定了动物的智力水平,人的大脑皮层中神经元数量远高于其他物种,所以人类比其他物种更聪明.大象的脑子总共有 2570 亿…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
我们常说的 AI 通用能力往往不针对具体的行业应用,而是主要解决日常或者泛化的问题,很多技术企业给出的方案是通用式的,比如通用文字识别,无论识别身份证.驾驶证.行驶证等,任何一张图片训练后的模型都会尽可能去识别文字内容. 正常 AI 模型开发过程包括数据标注,模型训练,模型部署几个流程,但是不同应用.不同企业业务场景的不同,在开发需求上会有差异,包括业务方向.预算.发展阶段.技术基础等差异,都会导致企业需要不同的技术细节和部署方式.在具体行业领域中,会增加技术选型.模型匹配等环节.这个时候,高效…
上一节介绍了youtube-8m项目,这个项目以youtube-8m dataset(简称8m-dataset)样本集为基础,进行训练.评估与测试.youtube-8m设计用于视频特征样本,但实际也适用于音频.另外,8m-dataset分两类,一类是聚合特征(video-level,使用整个样本的平均特征),另一类是帧特征(frame-level),帧特征样本适用于sound classification. 除了8m-dataset这个8百万的样本集,另一个样本集--audioset,也是经常使…
之前小程介绍了使用机器学习的办法来解决"音频标签化"的问题,并且提到了训练样本audioset跟youtube-8m的dataset,而训练模型上也提到了youtube-8m的模型. 本文对youtube-8m的模型做进一步讲解,重点介绍如何使用youtube-8m进行训练.评估与测试. (一)youtube-8m是什么? 机器学习离不开训练样本跟训练模型,对于"音频标签化",小程多次提到youtube-8m的训练模型, 那这个youtube-8m到底是什么?在下面…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在隐马尔科夫模型HMM(一)HMM模型中,我们讲到了HMM模型的基础知识和HMM的三个基本问题,本篇我们就关注于HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率. 1. 回顾HMM问题一:求观测序列的概率 首先我们回顾下HMM模型的问题一.这个…
当初选方向时就由于从小几何就不好.缺乏空间想像能力才没有选择摄影測量方向而是选择了GIS. 昨天同学找我帮他做图像匹配.这我哪里懂啊,无奈我是一个别人有求于我,总是不好意思开口拒绝的人.于是乎就看着他给的一章节内容開始敲代码了,今天总算给他完毕了. 做的比較简单,中间也遇到了不少问题,尤其是计算量大的问题,由于老师给的数据是粗配准过的数据, RANSAC算法评估时就简化了下. 理论内容: 第5章 图像配准建立几何变换模型 特征点建立匹配关系之后,下一步就是求解图像之间的变换关系.仿射变换可以非常…