本文主要讲解在matlab中实现Linear Regression和Logistic Regression的代码,并不涉及公式推导.具体的计算公式和推导,相关的机器学习文章和视频一大堆,推荐看Andrew NG的公开课. 一.线性回归(Linear Regression) 方法一.利用公式 : function [ theta ] = linearReg() %线性回归. X=[1 1;1 2;1 3;1 4]; %注意第一列全为1,即x0=1,第二列才为x1 Y=[1.1;2.2;2.7;3.…
写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度下降法解决MLA.然后分析加入不同范数(L0, L1, L2)对线性回归的影响.其次,另外一个重点是Logistic回归,他们分别用来 做回归和分类.线性回归与Logistic回归的区别,以及由Logistic回归引出的SoftMax回归及其用途. 一.线性回归 (1)残差 对于线性回归模型,我们一…
原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 [转载时请注明来源]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述…
对线性回归,logistic回归和一般回归 [转自]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介…
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,…
1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释.之后介绍了logistic回归.最后上升到理论层次,提出了一般回归. 2 问题引入 假设有一个房屋销售的数据如下: 面积(m^2) 销售价钱(万元) 123…
线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的就叫分类问题. 高尔顿的发现,身高的例子就是回归的典型模型. 回归分为线性回归(Linear Regression)和Logistic 回归. 线性回归可以对样本是线性的,也可以对样本是非线性的,只要对参数是线性的就可以,所以线性回归能得到曲线. 线性回归的目标函数? (1) 为了防止过拟合,将目标…
本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试吧,慢慢地再来改进.在这里再梳理一下吧! 线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的就叫分类问题. 高尔顿的发现,身高的例子就是回归的典型模型…
学习过程 下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型.就如同上面的线性回归函数. 线性回归 线性回归假设特征和结果满足线性关系.其实线性关系的表达能力非常强大,每个特征对结果的影响强弱可以由前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算.这样就可以表达特征与结果之间的非线性关系. 我们用X1,X2..Xn 去描述feature里面的分量,比…
1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失函数一般为平方误差.把其用最小二乘法进行优化得到的关于系数w求导所得到的矩阵形式的表达式求得的w便为最优解了. 线性回归可以参考:https://www.cnblogs.com/pinard/p/6004041.html 2.Logistic回归 逻辑回归假设数据服从伯努利分布,是一种广义的线性回归…