该文转自:https://www.cnblogs.com/li-yao7758258/p/6437440.html kd-tree理论以及在PCL 中的代码的实现   (小技巧记录:博客园编辑的网页界面变小了使用Ctrl  ++来变大网页字体) 通过雷达,激光扫描,立体摄像机等三维测量设备获取的点云数据,具有数据量大,分布不均匀等特点,作为三维领域中一个重要的数据来源,点云主要是表征目标表面的海量点的集合,并不具备传统网格数据的几何拓扑信息,所以点云数据处理中最为核心的问题就是建立离散点间的拓扑…
(小技巧记录:博客园编辑的网页界面变小了使用Ctrl  ++来变大网页字体) 通过雷达,激光扫描,立体摄像机等三维测量设备获取的点云数据,具有数据量大,分布不均匀等特点,作为三维领域中一个重要的数据来源,点云主要是表征目标表面的海量点的集合,并不具备传统网格数据的几何拓扑信息,所以点云数据处理中最为核心的问题就是建立离散点间的拓扑关系,实现基于邻域关系的快速查找. k-d树 (k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和…
听说k-d tree是一个骗分的好东西?(但是复杂度差评??? 还听说绍一的kdt常数特别小? KDT是什么 KDT的全称是k-degree tree,顾名思义,这是一种处理多维空间的数据结构. 例如,给定一张二维图,每次会插入一些点,并且查询一个矩形区域内的点数. 上面这个问题可以离线cdq分治,也可以离线离散化处理,这两个做法可以参见初涉二维数点问题.不过这就是2-d tree基础的应用,使得我们可以在线处理这个问题. 网上关于KDT的解释博客有很多,但我认为在了解了k-d tree的作用之…
写在前面   最近公众号的活动让更多的人加入交流群,尝试提问更多的我问题,群主也在积极的招募更多的小伙伴与我一起分享,能够相互促进.   这里总结群友经常问,经常提的两个问题,并给出我的回答: (1)啥时候能出教程,能够讲解PCL中的各种功能? (2)如何解决大规模点云的问题呢?     以下给出正式的解答以及计划安排 问题1:对于出PCL的教程,其实网上资料已经有很多,但是没有十分系统的资料,对于该问题,我也在想该如何去做,本人将会在后期的计划中慢慢推出系统的学习教程,实现理论与代码并行的PC…
以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac/blog/1693 https://en.wikipedia.org/wiki/K-d_tree http://homes.ieu.edu.tr/hakcan/projects/kdtree/kdTree.html k-d tree就是一个把一个平面(或超平面)划分的东西… 例如一维情况就是在划分…
这篇随笔是对Wikipedia上k-d tree词条的摘录, 我认为解释得相当生动详细, 是一篇不可多得的好文. Overview A \(k\)-d tree (short for \(k\)-dimensional tree) is a binary space-partitioning tree for organizing points in a \(k\)-dimensional space. \(k\)-d trees are a useful data structure for…
题目1: BZOJ 2716 题目大意:给出N个二维平面上的点,M个操作,分为插入一个新点和询问到一个点最近点的Manhatan距离是多少. 算法讨论: K-D Tree 裸题,有插入操作. #include <cstdio> #include <iostream> #include <cstring> #include <cstdlib> #include <algorithm> using namespace std; const int i…
k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),另一种是K近邻查询(K…
传送门 什么可持久化树套树才不会写呢,K-D Tree大法吼啊 对于第\(i\)个数,设其前面最后的与它值相同的位置为\(pre_i\),其后面最前的与它值相同的位置为\(aft_i\),那么对于一个询问\((l,r)\)和一个位置\(i\),需要同时满足\(pre_i < l \leq i \leq r < aft_i\)时,第\(i\)个位置的值才能产生贡献. 将\((pre_i , i , aft_i)\)看作三维空间中的一个点,那么能够产生贡献的一些点就会在一个立方体范围内.使用K-D…
VJ传送门 简要题意:给出两个大小均为\(N\)的点集\(A,B\),试在\(A\)中选择一个点,在\(B\)中选择一个点,使得它们在所有可能的选择方案中欧几里得距离最小,求出这个距离 下面给出的两种解法基本上都能够被卡成\(O(n^2)\)-- ① 按照平面最近点对的做法去做,只是在贡献答案的时候加上所属点集不同的限制就可以了. 当然这个可以卡,只要把\(A\).\(B\)集合之间分得很开,而\(A\)集合和\(B\)集合内部的点两两之间的距离很小,这样在分治下去的过程中没法贡献答案,最后在分…