spark rdd元素println】的更多相关文章

1.spark api主要分两种:转换操作和行动操作.如果在转化操作中println spark打印了 我也看不到. val result = sqlContext.sql(sql) val resultRdd = result.rdd.map(x => { //不能print,即使print了也看不到 }) 2.打印RDD的元素 参考:https://strongyoung.gitbooks.io/spark-programming-guide/rdds/rdd_operations/prin…
通过实验发现: foreach()遍历的顺序是乱的 但: collect()取到的结果是依照原顺序的 take()取到的结果是依照原顺序的 为什么呢???? 另外,可以发现: take()取到了指定数目的元素,就不再多取了 scala> val rdd = sc.makeRDD((0 to 9), 4) scala> rdd.collect res27: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) scala> rdd.partiti…
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformation 操作是延迟计算的,也就是说从一个RDD 转换生成另一个 RDD 的转换操作不是马上执行,需要等到有 Action 操作的时候才会真正触发运算. 2)Action 行动算子:这类算子会触发 SparkContext 提交 Job 作业.   Action 算子会触发 Spark 提交作业(Jo…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式数据集. 它定义了如何在集群的每个节点上操作数据的一系列命令,而不是指真实的数据,Spark通过RDD可以对每个节点的多个分区进行并行的数据操作. 之所以称弹性,是因为其有高容错性.默认情况下,Spark会在每一次行动操作后进行RDD重计算,如想在多个行动操作中使用RDD,可以将其缓存(以分区的方式…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism res0: Int = 2 由以上可知,如果第二个参数如果不设置默认为2,默认的并行度最大不超过2.  实例1:读取本地文件创建RDD scala> val rdd1=sc.textFile("file:///usr/local/doc/name1.txt") rdd1: org.…
foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this RDD. */def foreach(f: T => Unit): Unit scala> val rdd = sc.parallelize(1 to 9, 2) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at p…
collectAsMap(): Map[K, V] 返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个./** * Return the key-value pairs in this RDD to the master as a Map. * * Warning: this doesn't return a multimap (so if you have multiple values to the same key, only * on…