定理: 1.设G为无向图,设矩阵D为图G的度矩阵,设C为图G的邻接矩阵. 2.对于矩阵D,D[i][j]当 i!=j 时,是一条边,对于一条边而言无度可言为0,当i==j时表示一点,代表点i的度. 即: 3.对于矩阵C而言,C表示两点之间是否存在边,当i==j时为一点无边可言为0,即: 4.定义基尔霍夫矩阵J为度数矩阵D-邻接矩阵C,即J=D-C; 5.G图生成树的数量为任意矩阵J的N-1阶主子式的行列式的绝对值. 证明: 伪证明,不是证明基尔霍夫定理,而是讲一下原理,证明超过我们所需要使用的范…
图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K]+demo[K][N],即为demo[M][N]经过了两条条边的最小距离,floyd是 demo[M][N]=Min(demo[M][K]+demo[K][N],demo[M][N]),有可能两点之间直接距离最短,不经过第三边,那我们不考虑不经过两点之间的情况,那么demo[M][N]等于  demo[M…
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情况下,我们把图看成是一种由“顶点”和“边”组成的抽象网络.在各个“顶点“间可以由”边“连接起来,使两个顶点间相互关联起来.图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图: 为了更好地说明问题,下面我们看一个比较老套的通信问题: 在各大城市中建设通信网络,如下图所示,每个圆圈代表一座城市,而…
主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码.  参考   快速画出哈夫曼树 / 霍夫曼树 / 最优树   了解其构成.    哈夫曼树及 python 实现 python 代码 构建霍夫曼树 ,获得霍夫曼编码    简单实现: #节点类 class Node(object): def __init__(self,name=None,value=N…
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\(A\)为邻接矩阵,\(D\)为度数矩阵,则基尔霍夫(Kirchhoff)矩阵即为:\(K = D - A\).具体实现中,记 \(a\) 为Kirchhoff矩阵,则若存在 \(E(u, v)\) ,则\(a[u][u] ++, a[v][v] ++, a[u][v] --, a[v][u] --\…
一.霍夫线变换 霍夫线变换是OpenCv中一种寻找直线的方法,输入图像为边缘二值图. 原理: 一条直线在图像二维空间可由两个变量表示, 例如: 1.在 笛卡尔坐标系: 可由参数: (m,b) 斜率和截距表示. 2.在 极坐标系: 可由参数: 极径和极角表示.  对于霍夫变换,我们将用 极坐标系 来表示直线. 因此,直线的表达式可为: 化简后得: 一般来说对于点 , 我们可以将通过这个点的一族直线统一定义为:  这就意味着每一对 代表一条通过点  的直线. 如果对于一个给定点 我们在极坐标对极径极…
树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图G=(V,E)的一棵生成树,称T中全部边上的权数之和为生成树的权,记为w(T),即w(T)=Σw(e).如果生成树T*的权w(T*)是G的所有生成树的权最小者,则称T*是G的最优树,即w(T*)=Σmin{w(T)}. 在许多实际问题中,如在许多城市间建立公路网.输电网或通信网,都可以归结为赋权图的…
ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_z85_decode zmq_z85_decode(3)         ØMQ Manual - ØMQ/4.1.0 Name zmq_z85_decode – 从一个用Z85算法生成的文本中解析出二进制密码 Synopsis uint8_t *zmq_z85_decode (uint8_t *dest, char *string); Description zmq_z85_decode()函数将解密stri…
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本文将介绍一种专门检索频繁项集的新算法 - FP-growth 算法. 它只会扫描数据集两次,能循序挖掘出频繁项集.因此这种算法在网页信息处理中占据着非常重要的地位. FP-growth 算法基本原理 将数据存储到一种成为 FP 树的数据结构中,这样的一棵树包含了数据集中满足最小支持度阈值的所有节点信…
LM算法在相机标定的应用共有三处. (1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参.OpenCV中对应的函数为findExtrinsicCameraParams2. (2)单目标定中,在内外参都不固定的情况下,计算最佳内外参.OpenCV中对应的函数为calibrateCamera2. (3)双目标定中,在左右相机的内外参及左右相机的位姿都不固定的情况下,计算最佳的左右相机的内外参及最佳的左右相机的位姿矩阵.OpenCV中对应的函数为stereoCalibrate. 本文文阅读前提…