spark系列-3、缓存、共享变量】的更多相关文章

一.RDD简介 RDD 全称为 Resilient Distributed Datasets,是 Spark 最基本的数据抽象,它是只读的.分区记录的集合,支持并行操作,可以由外部数据集或其他 RDD 转换而来,它具有以下特性: 一个 RDD 由一个或者多个分区(Partitions)组成.对于 RDD 来说,每个分区会被一个计算任务所处理,用户可以在创建 RDD 时指定其分区个数,如果没有指定,则默认采用程序所分配到的 CPU 的核心数: RDD 拥有一个用于计算分区的函数 compute:…
1. 背景 通常情况下,能用一条sql语句完成的查询,我们尽量不用多次查询完成.因为,查询次数越多,通信开销越大.但是,分多次查询,有可能提高缓存命中率.到底使用一个复合查询还是多个独立查询,需要根据实际情况考虑. 2. 一个场景 我们有A.B两张表,需要做这样的一个查询: SELECT a1, a2, (SELECT b1, b2 FROM B WHERE B.b3 = A.a1) FROM A WHERE A.a3 = ? 当然,我们也可以拆分成两次查询: SELECT a1, a2 FRO…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 一. Spark核心概念 Master,也就是架构图中的Cluster Manager.Spark的Master和Workder节点分别Hadoop的NameNode和DataNode相似,是一种主从结构.Master是集群的领导者,负责协调和管理集群内的所有资源(接收调度和向WorkerNode发送指令).从大类上来分Master分为local和cluster两大类 local:也就是本地模式,所有计算都在一台服务器上完成,通常用…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 在Spark体验开始前需要准备环境和数据,环境的准备可以自己按照Spark官方文档安装.笔者选择使用CDH集群安装,可以参考笔者之前的文章:Cloudera Manager大数据集群环境搭建 至于数据的准备就是本文的主要内容,数据采用python爬虫的方式,爬去上一个月上海的天气数据,参考了https://www.cnblogs.com/haha-point/p/7467221.html,但是因为网站做了反爬虫,研究了一下,发下只要…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 Spark系列-SparkSQL 之前系统的计算大部分都是基于Kettle + Hive的方式,但是因为最近数据暴涨,很多Job的执行时间超过了1个小时,即使是在优化了HiveQL的情况下也有超过30分钟,所以近期把计算引擎从Hive变更为Spark. 普通的简单Job就使用SparkSQL来计算,数据流是经过spark计算,把结果插入到Mysql中 在项目中新建三个类,第一个Logger类用于日志的输出 # coding=utf-…
一.persist  和 unpersist 1.1.persist() : 用来设置RDD的存储级别 存储级别 意义 MEMORY_ONLY 将RDD作为反序列化的的对象存储JVM中.如果RDD不能被内存装下,一些分区将不会被缓存,并且在需要的时候被重新计算.这是是默认的级别 MEMORY_AND_DISK 将RDD作为反序列化的的对象存储在JVM中.如果RDD不能被与内存装下,超出的分区将被保存在硬盘上,并且在需要时被读取 MEMORY_ONLY_SER 将RDD作为序列化的的对象进行存储(…
[TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Master/Worker,Master负责资源调度,Worker是不同的运算节点,由Master统一调度,而Driver是我们提交Spark程序的节点,并且所有的reduce类…
分布式数据集创建之textFile         文本文件的RDDs能够通过SparkContext的textFile方法创建,该方法接受文件的URI地址(或者机器上的文件本地路径,或者一个hdfs://, sdn://,kfs://,其他URI).这里是一个调用样例: scala> val distFile = sc.textFile("data.txt") distFile: spark.RDD[String] = spark.HadoopRDD@1d4cee08 分布式数…
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 Flume 的整合. 二.推送式方法 在推送式方法 (Flume-style Push-based Approach) 中,Spark Streaming 程序需要对某台服务器的某个端口进行监听,Flume 通过 avro Sink 将数据源源不断推送到该端口.这里以监听日志文件为例,具体整合方式如…
共享变量: 共享变量通常情况下,当向Spark操作(如map,reduce)传递一个函数时,它会在一个远程集群节点上执行,它会使用函数中所有变量的副本.这些变量被复制到所有的机器上,远程机器上并没有被更新的变量会向驱动程序回传.在任务之间使用通用的,支持读写的共享变量是低效的.尽管如此,Spark提供了两种有限类型的共享变量,广播变量和累加器. 广播变量广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副本.Spark…