题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F[i][j]表示对于前i个数,和为j的方案数F[0][0]=1;F[i][j]+=F[i-1][j-i] (j>=i)转化为for(int i=1;i<=N;i++) for(int j=sum/2;j>=i;j--) F[j]+=F[j-i];答案是F[sum/2]/2,因为真实题目要求是…
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N…
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:{3} 和 {1,2}. 解题思路:01背包问题,设sum是1~n之和,其实就是求用数字1~n凑出sum/2的方案数(每个数字只能用一次),概括为以下几点: ①sum为奇数不能平分,直接…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…
题目链接:P2347 砝码称重 参考题解:点击进入 纪念我第一道没理解题意的题 ''但不包括一个砝码也不用的情况'',这句话我看成了每个砝码起码放一个 然后就做不出来了 思路: 1.这题数据很小,1000,所以其实没必要把多重背包用二进制优化成01背包,直接一个个拆开就好了 2.建立数组f[2000],用来f[j]=1表示存在重量为j这种可能,f[j]=0则表示不存在这种可能 建立数组a[2000],用来把多重背包一个个拆开 比如说我们输入的是 0 0 那a就是{,} 数组f其实是用了"桶&qu…
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, 就是因为用了递归, 递归时大量的出入栈操作必然比循环时间来得久 这题估摸着是每个测试样例就一个数, 记忆化的优势显示不出来, 但还是要认真看题 严格要求自己 记忆化搜索 vector<int> dp; int climbStairs(int n) { if (dp.size() <= 2)…
以下是从中文翻译成人话的题面: 给定一个长度小于等于500的序列,每个数字代表一个颜色,每次可以消掉一个回文串,问最多消几次可以消完? (7.16) 这个题从洛谷pend回来以后显示有103个测试点(满屏的AC好爽-- 上午考试的时候这个题直接用马拉车暴力贪心骗了十五分.然而每次消掉一个最长的回文串并不一定是最优的策略,这道题要用DP来做. 设计状态f[l, r]表示消掉原串这段区间内串的最小代价.老师说直接递推不好搞,应该是因为这个循环的阶段不好确定.考虑用记忆化搜索来转移. 四种情况: 1.…
问题描述 UVA11464 题解 第一直觉爆搜. 发现 \(N \le 15\) ,然后后面每行都可以通过第一行递推出来. 爆搜第一行,递推后面+check \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; template <typename Tp> void read(Tp &x){ x=0;char ch=1;int fh; while(ch!='-'&&(ch>'9'|…
众所周知, Linux 动态库的默认搜索路径是 /lib 和 /usr/lib .动态库被创建后,一般都复制到这两个目录中.当程序执行时需要某动态库, 并且该动态库还未加载到内存中,则系统会自动到这两个默认搜索路径中去查找相应的动态库文件,然后加载该文件到内存中,这样程序就可以使用该动态库中的函 数,以及该动态库的其它资源了.在 Linux 中,动态库的搜索路径除了默认的搜索路径外,还可以通过以下三种方法来指定. 方法一:在配置文件 /etc/ld.so.conf 中指定动态库搜索路径.每次编辑…
题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集合的和必为 \(\dfrac{sum}{2}\). 将 \(\dfrac{sum}{2}\) 作为容量跑 0-1 背包即可. Code: #include<iostream> using namespace std; const int N=45,SUM=785; typedef long lon…
不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 10000000 + 3; long long f[maxn]; int main() { int n, sumv = 0; scanf("%d",&n); for(int i = 1;i <= n; ++i) sumv += i; if(sumv % 2 != 0…
NOIP2014 提高组模拟试题 第一试试题 题目概况: 中文题目名称 合理种植 排队 科技节 源程序文件名 plant.pas/.c/.cpp lineup.pas/.c/.cpp scifest.pas/.c/.cpp 输入文件名 plant.in lineup.in scifest.in 输出文件名 plant.out lineup.out scifest.out 每个测试点时限 1s 1s 1s 测试点数目 10 10 10 每个测试点分值 10 10 10 内存上限 128MB 128…
[例9]放苹果(POJ 1664) Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第一行是测试数据的数目t(0 <= t <= 20).以下每行均包含二个整数M和N,以空格分开.1<=M,N<=10. Output 对输入的每组数据M和N,用一行输出相应的K. Sample Input 1 7 3 Sample Output 8 (1)编程思路. 设f[m]…
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to decorate the show-window of his shop with textile stripes of white, blue and red colors. He wants to satisfy the following conditions: Stripes of the…
一.问题描述 物品无限的背包问题:有n种物品,每种均有无穷多个.第 i 种物品的体积为Vi,重量为Wi.选一些物品装到一个容量为 C 的背包中,求使得背包内物品总体积不超过C的前提下重量的最大值.1≤n≤100, 1≤Vi≤C≤10000, 1≤Wi≤1000000. 二.解题思路 我们可以先求体积恰好为 i 时的最大重量(设为d[i]),然后取d[i]中的最大值(i ≤ C).与之前硬币问题,“面值恰好为S”就类似了.只不过加了新属性——重量,相当于把原来的无权图改成带权图,即把“+1”变成“…
ACM思维题训练集合 You've got an array a, consisting of n integers. The array elements are indexed from 1 to n. Let's determine a two step operation like that: First we build by the array a an array s of partial sums, consisting of n elements. Element number…
1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> using namespace std; #define maxn 1000+5 int n; int a[maxn][maxn]; int d[maxn][maxn]; int main(){ for(;cin>>n && n;){ memset(d,,sizeof(d));…
4547: Hdu5171 小奇的集合 Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: 175  Solved: 85[Submit][Status][Discuss] Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大 值.(数据保证这个值为非负数) Input 第一行有两个整数n,k表示初始元素数量和操作数,第二行包含n个整数表示初始时可重集的元素. 对于100…
递推型DP 将每个滑雪点都看作起点,从最低点开始逐个由四周递推出到达此点的最长路径的长度,由该点记下. 理论上,也可以将每一点都看作终点,由最高点开始计数,有兴趣可以试试. //经典DP-由高向低海拔滑雪-求最长路 //Memory:372K Time:16 Ms #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; #de…
动态规划的核心就是状态和状态转移方程. 对于该题,需要用抽象的方法思考,把当前的位置(i,j)看成一个状态,然后定义状态的指标函数d(i,j)为从格子出发时能得到的最大和(包括格子本身的值). 在这个状态定义下,原问题的解就是d(i,j). 下面看一下不同状态之间如何转移.从格子(i,j)出发有两种策略.如果向左走,则到(i+1,j)后需要求"从(i+1,j)出发能得到的最大和"这一问题,即d(i+1,j). 类似的,往右走之后需要求解d(i+1,j+1).由于可以在这两个决策中自由选…
做数论都做傻了,这道题目 有推荐,当时的分类放在了递推里面,然后我就不停的去推啊推啊,后来推出来了,可是小一点的数 输出答案都没问题,大一点的数 输出答案就是错的,实在是不知道为什么,后来又不停的看,突然有股傻眼的感觉,这个貌似很面善很面熟啊,不禁想起以前一到背包题目,也是给了具体数字 最大范围,最后使用背包来解决的,那么这道有些相似,后来翻了 背包九讲的PDF,我了个去,这不就是 完全背包么? 恨死!!!一定要牢牢记住!!! 有N种物品和一个容量为V的背包,每种物品都有无限件可用. 第i种物品…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方法. 题解: 两种方法. 一.无限背包 将1,2,4,8...看作物品体积就好. 复杂度O(n*k),k约为20. 二.递推 对于dp[i],有两种情况. (1)i为奇数.则分解结果中一定有1. 所以dp[i] = dp[i-1]. (2)i为偶数.再分两种情况: a. 分解结果中有1,所以dp[i] +…
题目链接:点击进入 题目分析: 简单的组合背包模板题,但是递推的同时要刷新这种情况使用了哪些物品 ac代码: #include<bits/stdc++.h> using namespace std; ],zhu[],t[]; struct student { int s; int number; ]; }f[][]; int main() { std::ios::sync_with_stdio(false); int m,v,n;//m总重量,v总阻力,n物品数 cin>>m>…
诸侯安置 这道题是一题递推题,一开始自己不知道,用了搜索,只过了三个样例: 两两相同的合并, 成 1,1,3,3,5,5........n*2-1; 然后我们会容易发现一种不同与搜索的动态规划做法. f[i,j]:=f[i,j]+f[k,j-1]*(Len[i]-(j-1)) [j-1<=k<=i-1] 1.f[i,j]表示前i列放置j个的方案,且第j个放在第i列上, 2.前面f[k,j-1]个都需要累加上来,举一个说明为什么需要累加:对于前4排放置2个的情况(平移后的),2个即可以放在第一列…
题意 : 给出一个数 n ,问如果使用 2 的幂的和来组成这个数 n 有多少种不同的方案? 分析 :  完全背包解法 将问题抽象==>有重量分别为 2^0.2^1.2^2…2^k 的物品且每种物品可无限取,问有多少种方案来填满容量为 n 的背包? 之前并不知道背包还能用来计数....... 有一道裸的背包计数问题可以作为练习 ==> HDU 1284 定义 dp[ i ][ j ] 为前 i 种物品组成总重量 j 的方案数为多少.初始化为 dp[ 0 ][ 0 ] = 1 其他为 0 则状态转…
poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 8281 Description Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an…
题目描述 对于一个递归函数w(a,b,c) 如果a<=0 or b<=0 or c<=0就返回值1. 如果a>20 or b>20 or c>20就返回w(20,20,20) 如果a<b并且b<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c) 其它别的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1) 这是个简单的递归函数,但实现起来可能会有些问题.当a,b,c均为1…
http://codeforces.com/problemset/problem/118/D 设dp[i][j][k1][k2] 表示,放了i个1,放了j个2,而且1的连续个数是k1,2的连续个数是k2 如果这样写,用dfs写是很简单的.但是超时,我记忆化不到 如果用递推写,对于每一个状态,更新到下一个状态. 如果放的是1,那么新的状态是dp[i + 1][j][k1 + 1][0]也就是,用多了一个1,而且连续的个数也增加了.同时,2的连续个数就打破了,变成了0 这种枚举旧状态,更新下一个状态…