关于欧几里得算法(gcd)的证明】的更多相关文章

Bezout定理: 对于任意整数a,b,存在一对整数x,y满足:a*x+b*y=gcd(a,b) 证明如下: 在欧几里得算法的最后一步:b=0,即:gcd(a,0)=a 对于b>0,根据欧几里得算法gcd(a,b)=gcd(b,a%b).假设存在一对x,y满足:b*x+(a%b)*y=gcd(b,a%b) 因为b*x+(a%b)*y=b*x+(a-b*(a/b))*y=a*y+b*(x-(a/b)*y)   //规定这里和下一行的除号'/'是向下取整. 所以令x'=y,y'=x-(a/b)*y,…
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在数学上得到了完全严格的证实,否则我们不能认为程序是正确的.既然存在即合理,因此下面我就详细得解说一下欧几里得算法,它为什么是正确的算法(算法过程就不给出了,有了思想,无论是迭代还是循环实现应该都不成问题),为什么有那么好的时间复杂性. 首先还是证明上述命题:注意到证明了该命题就证明了欧几里得算法的正…
求a,b的最大公约数我们经常用欧几里得算法解决,也称辗转相除法, 代码很简短, int gcd(int a,int b){ return (b==0)?a:gcd(b,a%b); } 但其中的道理却很深刻,完全理解不简单,以前都只是记一下代码,今天研究了很久,才差不多理解了其中的原因 从代码可以看出,gcd(a,b)=gcd(b,a%b),关键就在于证明这个等式 证明如下, 设c=gcd(a,b),则a=kc,b=nc(n,c为正整数), 设r=a%b,可得r=a-mb(m为a/b向下取整),…
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r  (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也…
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^{18}$. 求解这个问题有一种方法,叫做扩展欧几里得算法(简称扩欧),其本质是一个递归求解的过程. 首先由一个前置的结论是$gcd(x,y)=gcd(y,x\%y)$.此处的$\%$为$c++$中取模操作,下同. 我们不妨设$a>b$ 当$a≠0,b=0$时,则显然有$x=1,y=0$.此时$gc…
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约数,那么x|a,x|b; ①由整数除法具有传递性(若x能整除a,x能整除b,那么x可整除a,b的任意线性组合)知x|a-b; ②设x不是b的因子,则x不是b和a-b的公因子:设x不是a的因子,则x不是b和a-b的公因子:所以可以得出GCD(a,b)=GCD(b,a-b); ③由a>=b知,a可表示为a=…
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经学会了学习这个算法的前置知识:欧几里得算法. 对于对欧几里得算法还有知识模糊的读者,请不要担心,这里为你准备了前导知识讲解,请移步至本蒟蒻的另两篇博客: 浅谈GCD 求最大公约数的方式 裴蜀定理 裴蜀定理的概念及证明 因为翻译版本的不同,这个定理可能还会被叫做贝祖定理.\(B\acute{e}zou…
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b)  =>  a=m*d,b=n*d 则m*d=t*n*d+a%b  =>  a%b=d*(m-t*n) gcd(b, a%b)=gcd(n*d, (m-t*n)*d) 令gcd(n, m-t*n)=e  =>  n=x*e,m-t*n=y*e 则m-x*e*n=y*e  =>  m=e*(x*n+y) 由gcd(n, m…
欧几里得算法的自然语言描述 计算两个非负整数p和q的最大公约数: 若q是0,则最大公约数为p.否则将p除以q得到余数r,p和q的最大公约数即为q和r的最大公约数. 数学归纳法证明 基础步骤: 若q = 0,则 gcd(p, q) = gcd(p, 0) = p. 归纳步骤: 令 p = a * q + r, 其中 p.a.q.r 均为非负整数. 设 d 整除 p 和 q, 则 d 可以整除 p - a * q = r,即 p / d = a*q / d + r / d . 此时, d 为 p,q…
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理).扩展欧几里德常用在求解模线性方程及方程组中. ①:裴蜀定理: 裴蜀定理\((Bezouts identity)\)是代数几何中一个定理,其内容是若设a,b是整数,则存在整数x,y,使得ax+by=gcd(a,b),(a,b)代表最大公因数,则设a,b是不全为零的整数,则存在整数x,y,使…