大数据学习(7)Hadoop高可用】的更多相关文章

高可用模式下的Hadoop集群搭建 本篇博客将会在之前写过的Linux的完整部署的基础上进行,暂时不会涉及到伪分布式或者完全分布式模式搭建,由于HA模式涉及到的配置文件较多,维护起来也较为复杂,相信学会部署高可用模式了,其他模式的搭建也会比较驾轻就熟,关于各种配置文件的讲解,如果有时间会在后期另开一篇博客进行详细的解读,现在正式开始部署流程! 1. 安装准备 基本思路讲解:在做正式安装之前,首先需要整理有哪些软件包是一定需要安装的,尽量先在一台机器上(一般我们称这台机器为“母机”)把所有需要的软…
Hbase高可用+完全分布式完整部署教程 本篇博客承接上一篇sqoop的部署教程,将会详细介绍完全分布式并且是高可用模式下的Hbase的部署流程,废话不多说,我们直接开始! 1. 安装准备 部署Hbase时,我们使用的版本为1.2.8 2. 正式安装 1. 将hbase-1.2.8-bin.tar.gz文件使用远程传输软件放到s101的/home/centos/downloads下 2. 将hbase-1.2.8-bin.tar.gz解压缩至/soft下 tar -xzvf /home/cent…
1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效.可伸缩的特点. 大数据学习资料分享群119599574 Hadoop的核心是YARN,HDFS,Mapreduce,常用模块架构如下 2.HDFS 源自谷歌的GFS论文,发表于2013年10月,HDFS是GFS的克隆版,HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测…
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程前需要做一些准备工作,好了,那我们就开始吧! 1. 编程准备 在后续的学习中,我们基本都是在用IntelliJ IDEA这款集成开发环境,所以在Windows端,我们首先需要准备以下这三款软件: 1)IntelliJ IDEA软件下载并安装,盗版即可,激活码自己上百度搜,本人使用的版本是Intell…
HDFS HA高可用 1.1 HA概述 1)所谓HA(High Available),即高可用(7*24小时不中断服务). 2)实现高可用最关键的策略是消除单点故障.HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA. 3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF). 4)NameNode主要在以下两个方面影响HDFS集群 NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启 NameNode机器需要升级,包括软件.硬件升…
Hadoop编程实战——Mapreduce基本功能实现 此篇博客承接上一篇总结的HDFS编程实战,将会详细地对mapreduce的各种数据分析功能进行一个整理,由于实际工作中并不会过多地涉及原理,因此,掌握好mapreduce框架将会有助于了解sql语句在大数据场景下的底层实现原理,从而能够帮助开发人员优化sql语句,提高查询速度,废话不多说,现在正式开始吧! 1. Mapreduce入门——word count实现 一个基本的mapreduce程序一般要写三个类,Mapper类,Reducer…
hadoop的基本概念: Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large dat…
SequenceFile(Hadoop序列文件)基础知识与应用 上篇编程实战系列中本人介绍了基本的使用HDFS进行文件读写的方法,这一篇将承接上篇重点整理一下SequenceFile的相关知识及应用 1. SequenceFile简介 SequenceFile是Hadoop自带的一种键值对文件格式,它具有以下几个特点: 1. 由于该文件类型是Hadoop自带的,因此对Hadoop环境具有最强的兼容性 2. 由于Hadoop不适合存储大量小文件,SequenceFile作为容器文件,能够封装大量的…
一.Hadoop的优势 1)高可靠性:因为Hadoop假设计算元素和存储会出现故障,因为它维护多个工作数据副本,在出现故障时可以对失败的节点重新分布处理. 2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点. 3) 高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度. 4)高容错性:自动保存多份副本数据,并且能够自动将失败的任务重新分配. 二.Hadoop组成 1)Hadoop HDFS:一个高可靠.高吞吐量的分布式文件系统. 2)Hadoop Map…
一.Hadoop运行模式 (1)本地模式(默认模式): 不需要启用单独进程,直接可以运行,测试和开发时使用. (2)伪分布式模式: 等同于完全分布式,只有一个节点. (3)完全分布式模式: 多个节点一起运行. 1.1  本地运行Hadoop 案例 1.1.1 官方grep案例 1)创建在hadoop-2.7.6文件下面创建一个input文件夹 [root@master hadoop-2.7.6]# mkdir input 2)将hadoop的xml配置文件复制到input [root@maste…