这次根据结合Google的翻译果然速度快上许多,暂时休息,晚上在传一个exm2的随笔. 关于过度拟合下的问题 考虑从x∈R预测y的问题,下面的最左边的图显示了将\(y=\theta_0+\theta_1x\)拟合到数集的结果,我们看到数据不是真的在直线上,所以适合度不是很好. 相反,如果我们添加了一个额外的特征\(x^2\),并且拟合\(y=\theta_0+\theta_1x+\theta_2x^2\),那么我们获得一个稍微更好的拟合数据(见中图). 哈哈,这时候是不是我们添加的功能越多越好呢…