Hadoop Yarn Capacity Scheduler】的更多相关文章

Capacity 调度器配置 <property> <name>yarn.resourcemanager.scheduler.class<name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value> </property> 加载配置文件 $yarn rmadmin -refreshQueue…
Yarn capacity scheduler 首先要知道, [Attention: RM有两个组件,其中Scheduler完全就只是负责资源的分配:ApplicationsManager则负责接受application,选取ApplicationMaster,监控重启AM.] CapacityScheduler的优点就是灵活,集群的利用率高:缺点也是由其灵活性造成的,因为CapacityScheduler不支持抢占式调度,必须等上一个任务主动释放资源. 可以看出,只要提交的app数没有达到上限…
转自:https://m.aliyun.com/yunqi/articles/79700 背景 使用过hadoop的人基本都会考虑集群里面资源的调度和优先级的问题,假设你现在所在的公司有一个大hadoop的集群,有很多不同的业务组同时使用.但是A项目组经常做一些定时的BI报表,B项目组则经常使用一些软件做一些临时需求.那么他们肯定会遇到同时提交任务的场景,这个时候到底如何分配资源满足这两个任务呢?是先执行A的任务,再执行B的任务,还是同时跑两个? 目前一些使用EMR的大公司,会使用一个比较大的集…
背景 yarn默认使用的是最简单的FIFO调度器,即一个default队列,所有用户共享,分配资源也是先到先得,没有优先级之分.有时一两个任务就把资源全占了,其他任务吃不到资源造成饥饿,显然这样的资源分配是不合理的(在当今社会主义之中,我们要共同富裕啊).yarn还有两种资源调度器,capacity schedule和fair schedule,本文主要研究下capacity schedule. 什么是capacity schedule Capacity Schedule调度器以队列为单位划分资…
本文通过MetaWeblog自动发布,原文及更新链接:https://extendswind.top/posts/technical/hadoop_yarn_resource_scheduler 搜了一些博客,发现写得最清楚的还是<Hadoop权威指南>,以下内容主要来自<Hadoop The Definitive Guide> 4th Edition 2015.3. Hadoop YARN Scheduler 三个调度器 YARN提供了CapacityScheduler, Fai…
作者: 大圆那些事 | 文章可以转载,请以超链接形式标明文章原始出处和作者信息 网址: http://www.cnblogs.com/panfeng412/archive/2013/09/13/hadoop-capacity-scheduler-source-code-analysis.html 前段时间项目中使用到了Hadoop Capacity Scheduler调度器,根据业务需求,需要进行二次开发工作,因此研究了其实现原理及源码,这里是自己做的一些总结工作(摘自ppt). 1. 基本原理…
关于Scheduler YARN有四种调度机制:Fair Schedule,Capacity Schedule,FIFO以及Priority: 其中Fair Scheduler是资源池机制,进入到里面的应用是共享pool里面的资源:只有当资源配比发生紧张的时候,才会根据权重来进行调整: Capacity则是基于队列的,每个队列都会被分配资源比例,这种资源比例是固定:所以没有资源共享的概念 MapR,cloudera都是默认采用Fair Scheduler,Ambari(Hortonwork)默认…
目前Hadoop有三种比较流行的资源调度器:FIFO .Capacity Scheduler.Fair Scheduler.目前Hadoop2.7默认使用的是Capacity Scheduler容量调度器. 一.FIFO(先入先出调度器) Hadoop1.x使用的默认调度器就是FIFO.FIFO采用队列方式将一个一个job任务按照时间先后顺序进行服务.比如排在最前面的job需要若干maptask和若干reducetask,当发现有空闲的服务器节点就分配给这个job,直到job执行完毕. 二.Ca…
试想一下,你现在所在的公司有一个hadoop的集群.但是A项目组经常做一些定时的BI报表,B项目组则经常使用一些软件做一些临时需求.那么他们肯定会遇到同时提交任务的场景,这个时候到底如何分配资源满足这两个任务呢?是先执行A的任务,再执行B的任务,还是同时跑两个? 如果你存在上述的困惑,可以多了解一些yarn的资源调度器. 在Yarn框架中,调度器是一块很重要的内容.有了合适的调度规则,就可以保证多个应用可以在同一时间有条不紊的工作.最原始的调度规则就是FIFO,即按照用户提交任务的时间来决定哪个…
0 YARN中实体 资源管理者(resource manager, RM) 长时间运行的守护进程,负责管理集群上资源的使用 节点管理者(node manager, NM) 长时间运行的守护进程,在集群的所有节点上运行,负责监视容器 容器(container) 在受限的资源集合(内存.CPU等)下执行应用相关的进程 1 YARN应用 1.1 运行 (1) 客户端联系RM,请求运行应用master(application master, AM)进程. (2) RM定位可用NM,并在NM上启动容器并在…
注意,配置这些参数前,应充分理解这几个参数的含义,以防止误配给集群带来的隐患.另外,这些参数均需要在yarn-site.xml中配置. 1.    ResourceManager相关配置参数 (1) yarn.resourcemanager.address 参数解释:ResourceManager 对客户端暴露的地址.客户端通过该地址向RM提交应用程序,杀死应用程序等. 默认值:${yarn.resourcemanager.hostname}:8032 (2) yarn.resourcemana…
参照site:http://hadoop.apache.org/docs/r2.6.0/hadoop-yarn/hadoop-yarn-common/yarn-default.xml 我们在配置yarn的时候只有充分了解各参数的含义,才能避免隐患.这些参数均在yarn-site.xml中配置 以下涉及的简写: RM :ResourceManager AM :ApplicationMaster NM :NodeManager 参数 默认值 描述 yarn.resourcemanager.hostn…
YARN产生背景 MRv1的局限 YARN是在MRv1基础上演化而来的,它克服了MRv1中的各种局限性.在正式介绍YARN之前,先了解下MRv1的一些局限性,主要有以下几个方面: 扩展性差.在MRv1中,JobTracker同时兼备了资源管理和作业控制两个功能,这成为系统的一个最大瓶颈,严重制约了Hadoop集群扩展性. 可靠性差.MRv1采用了master/slave结构,其中,master存在单点故障问题,一旦它出现故障将导致整个集群不可用. 资源利用率低.MRv1采用了基于槽位的资源分配模…
理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资源的就是Scheduler.其实调度本身就是一个难题,很难找到一个完美的策略可以解决所有的应用场景.为此,Yarn提供了多种调度器和可配置的策略供我们选择. 一.调度器的选择 在Yarn中有三种调度器可以选择:FIFO Scheduler ,Capacity Scheduler,FairS ched…
1. 计数器应用 2. 数据清洗(ETL) 在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据.清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序. LogMapper.java @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] fi…
Hadoop 和 MRv1 简单介绍 Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动).图 1 演示了一个 Hadoop 集群的高级组件.   图 1. Hadoop 集群架构的简单演示 一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统.MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模…
YARN是开源项目Hadoop的一个资源管理系统,最初设计是为了解决Hadoop中MapReduce计算框架中的资源管理问题,但是现在它已经是一个更加通用的资源管理系统,可以把MapReduce计算框架作为一个应用程序运行在YARN系统之上,通过YARN来管理资源.如果你的应用程序也需要借助YARN的资源管理功能,你也可以实现YARN提供的编程API,将你的应用程序运行于YARN之上,将资源的分配与回收统一交给YARN去管理,可以大大简化资源管理功能的开发.当前,也有很多应用程序已经可以构建于Y…
  1.先决条件 要使用yarn的capcitiy调度器,必须开启yarn的ACLs,否则队列ACLs设置不生效 开启yarn ACLs: # hadoop: core-site.xml hadoop.security.authorization=true #开启服务级别验证,否则hadoop组件的acl设置不生效 # yarn: yarn-site.xml yarn.acl.enable=true yarn.admin.acl=admin 2.容量调试器 2.1 特性 分层的队列 队列资源控制…
一 概述       Apache Hadoop YARN (Yet Another Resource Negotiator,还有一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统.可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率.资源统一管理和数据共享等方面带来了巨大优点.                                                                      YARN最初是为了修复MapReduce实现…
写在前面 一.大数据全栈 头两节讲完HDFS & MapReduce,这一部分聊一聊它们之间的“人物关系”. 其中也讨论下k8s的学习必要性. Ref: [Distributed ML] Yi WANG's talk 二.知识点 容器技术与Kubernetes Goto: 3 万容器,知乎基于Kubernetes容器平台实践 Goto: 如何学习.了解kubernetes? Goto: 选K8S是对的,但是用不好就是你的不对了 Yarn资源管理 一.重要概念 ResouceManager App…
二.Capacity Scheduler(容器调度器)的配置 2.1 容器调度介绍 Capacity 调度器允许多个组织共享整个集群,每个组织可以获得集群的一部分计算能力.通过为每个组织分配专门的队列,然后再为每个队列分配一定的集群资源,这样整个集群就可以通过设置多个队列的方式给多个组织提供服务了.除此之外,队列内部又可以垂直划分,这样一个组织内部的多个成员就可以共享这个队列资源了,在一个队列内部,资源的调度是采用的是先进先出(FIFO)策略. 通过上面那幅图,我们已经知道一个job可能使用不了…
老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了 跟这个yarn.nodemanager.pmem-check-enabled参数应该也有关系 在这篇文章中得到启发:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-memory-cpu-scheduling/ 调度和隔离 Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存…
先附一个官网地址 Capacity Scheduler是YARN中默认的资源调度器. 相关参数配置: 资源分配相关参数 ``` (1) capacity:队列的资源容量(百分比). 当系统非常繁忙时,应保证每个队列的容量得到满足,而如果每个队列应用程序较少,可将剩余资源共享给其他队列. 注意,所有队列的容量之和应小于100. (2) maximum-capacity:队列的资源使用上限(百分比).由于存在资源共享,因此一个队列使用的资源量可能超过其容量,而最多使用资源量可通过该参数限制. (3)…
前言:为了研究需要,将Capacity Scheduler和Fair Scheduler的原理和代码进行学习,用两篇文章作为记录.如有理解错误之处,欢迎批评指正. 容量调度器(Capacity Scheduler)是Yahoo公司开发的多用户调度器.多用户调度器的使用场景很多,根据资料1的说法,Hadoop集群的用户量越来越大,不同用户提交的应用程序具有不同的服务质量要求(QoS): 1. 批处理作业:耗时较长,对完成时间没有严格要求.如数据挖掘.机器学习等应用. 2. 交互式作业:期望及时返回…
简介: 本文介绍了 Hadoop 自 0.23.0 版本后新的 map-reduce 框架(Yarn) 原理,优势,运作机制和配置方法等:着重介绍新的 yarn 框架相对于原框架的差异及改进:并通过 Demo 示例详细描述了在新的 yarn 框架下搭建和开发 hadoop 程序的方法. 读者通过本文中新旧 hadoop map-reduce 框架的对比,更能深刻理解新的 yarn 框架的技术原理和设计思想,文中的 Demo 代码经过微小修改即可用于用户基于 hadoop 新框架的实际生产环境.…
环境:Linux, 8G 内存.60G 硬盘 , Hadoop 2.2.0 为了构建基于Yarn体系的Spark集群.先要安装Hadoop集群,为了以后查阅方便记录了我本次安装的详细步骤. 事前准备 1. 机器准备 三台主机,#后面说明了用途 192.168.1.1   #hadoop1 : master 192.168.1.2   #hadoop2 : datanode1 192.168.1.3   #hadoop3:  datanode2 在hadoop1上, vi /etc/sysconf…
1. 介绍 YARN(Yet Another Resource Negotiator)是一个通用的资源管理平台,可为各类计算框架提供资源的管理和调度. 之前有提到过,Yarn主要是为了减轻Hadoop1中JobTracker的负担,对其进行了解耦.现在通常都会使用Hadoop Yarn,因为其稳定性更加优秀,YARN是对Mapreduce V1重构得到的,有时候也称为MapReduce V2. 2. YARN体系架构 首先,整个Hadoop Yarn和Hadoop1一样,也是建立在hdfs分布式…
在说Hadoop Yarn的原理之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTracker等工作.这自然就会产生一个问题,那就是JobTracker负载太多,有点"忙不过来".于是Hadoop在1.0到2.0的升级过程中,便将JobTracker的资源调度工作独立了出来,而这一改动,直接让Hadoop成为大数据中最稳固的那一块基石.,而这个独立出来的资源管理框架,就是Ha…
在说Hadoop Yarn之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTracker等工作.这自然就会产生一个问题,那就是JobTracker负载太多,有点"忙不过来".于是Hadoop在1.0到2.0的升级过程中,便将JobTracker的资源调度工作独立了出来,而这一改动,直接让Hadoop成为大数据中最稳固的那一块基石.,而这个独立出来的资源管理框架,就是Hadoo…
Apache Hadoop 是最流行的大数据处理工具之一.它多年来被许多公司成功部署在生产中.尽管 Hadoop 被视为可靠的.可扩展的.富有成本效益的解决方案,但大型开发人员社区仍在不断改进它.最终,2.0 版提供了多项革命性功能,其中包括 Yet Another Resource Negotiator (YARN).HDFS Federation 和一个高度可用的 NameNode,它使得 Hadoop 集群更加高效.强大和可靠.在本文中,将对 YARN 与 Hadoop 中的分布式处理层的…