机器学习实战之PCA】的更多相关文章

降维技术 对数据进行降维有如下一系列的原因: 使得数据集更容易使用 降低很多算法的计算开销 去除噪音 使得结果易懂 在以下3种降维技术中, PCA的应用目前最为广泛,因此本章主要关注PCA. 主成分分析(Principal Component Analysis, PCA) 通俗理解:就是找出一个最主要的特征,然后进行分析. 在PCA中,数据集从原始坐标系转换为新的坐标系.新的坐标系选择由数据本身决定.第一个新轴选择数据中方差最大的方向.第二轴与第一轴正交,且具有最大方差的方向.对于原始数据中的所…
PCA——主成分分析 简介 PCA全称Principal Component Analysis,即主成分分析,是一种常用的数据降维方法.它可以通过线性变换将原始数据变换为一组各维度线性无关的表示,以此来提取数据的主要线性分量. z=wTx  其中,z为低维矩阵,x为高维矩阵,w为两者之间的映射关系.假如我们有二维数据(原始数据有两个特征轴——特征1和特征2)如下图所示,样本点分布为斜45°的蓝色椭圆区域. PCA算法认为斜45°为主要线性分量,与之正交的虚线是次要线性分量(应当舍去以达到降维的目…
注释:由于各方面原因,理论部分不做介绍,网上很多自行百度吧! pca.py import numpy as np import matplotlib.pyplot as plt import math def loadDataSet(filename, delin = '\t'): fr = open(filename) #读取分割存入数组 stringArr = [line.strip().split(delin) for line in fr.readlines()] dataArr = […
1.  向量及其基变换 1.1 向量内积 (1)两个维数同样的向量的内积定义例如以下: 内积运算将两个向量映射为一个实数. (2) 内积的几何意义 如果A\B是两个n维向量, n维向量能够等价表示为n维空间中的一条从原点发射的有向线段, 为方便理解, 在这里如果A和B都是二维向量.A=(x1,y1) , B=(x2,y2),在二维平面上A/B能够用两条发自原点的有向线段表示,例如以下图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6…
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3. 过多的变量会妨碍查找规律的建立. 4. 仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 1. 2 降维的目的: 1. 减少预测变量的个数 2. 确保这些变量是相互独立的 3. 提供一个框架来…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结果易懂. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度…
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/machinelearn…
相关博文: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) 主成分分析(PCA)的推导与解释 主要内容: 一.向量內积的几何意义 二.基的变换 三.协方差矩阵 四.PCA求解 一.向量內积的几何意义 1.假设A.B为二维平面xoy内两个向量,A为(x1, y1),B为(x2, y2),那么A.B的內积为:AB = |A||B|cosΘ = x1*x2 + y1*y2,结果为一个标量. 2.那么A.B內积的几何意义又是什么呢?单从“|A||B|cosΘ”或者“x1*x2 + y1*y…
近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学习(也称聚类).有监督学习有两种功能,一种是分类(本书第一部分介绍),一种是回归预测(本书第二部分介绍).这样就对这本书的思路有了一个总体把握.本书涉及算法包括:k-近邻算法(KNN).决策树.朴素贝叶斯.Logistic回归.支持向量机(SVM).AdaBoost算法.k-均值聚类算法(k-means).A…
MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素…