首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
PCA最小平方误差理论推导
】的更多相关文章
PCA最小平方误差理论推导
PCA最小平方误差理论推导 PCA求解其实是寻找最佳投影方向,即多个方向的标准正交基构成一个超平面. 理论思想:在高维空间中,我们实际上是要找到一个d维超平面,使得数据点到这个超平面的距离平方和最小 假设\(x_k\)表示p维空间的k个点,\(z_k\)表示\(x_k\)在超平面D上的投影向量,\(W = {w_1,w_2,...,w_d}\)为D维空间的标准正交基,即PCA最小平方误差理论转换为如下优化问题\[z_k = \sum_{i=1}^d (w_i^T x_k)w_i---(1)\]…
数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归
# coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据集中的特征值总共10项, 如下: # 年龄 # 性别 #体质指数 #血压 #s1,s2,s3,s4,s4,s6 (六种血清的化验数据) #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围.验证就会发现任何一列的所有数值平方和为1…
PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点的距离(即投影误差)的平方和最小.我们假设投影到的k维子空间的标准正交基(orthonormal basis)为 ,这组标准正交基组成了一个的矩阵U: 则称为子空间W 的投影矩阵(projection matrix). 如果我们不从标准正交基出发,如何求得W的投影矩阵?设是W 的任意一组基,形成一个的矩阵…
【降维】主成分分析PCA推导
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通常需要被表示成向量形式以输入模型进行训练. 但是在对向维向量进行处理和分析时, 会极大地消耗系统资源, 甚至产生维度灾难. 因此, 对特征向量进行降维, 即用一个低维度的向量表示原始高维度的特征就显得尤为重要. PCA(Principal C…
主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本数据进行中心化处理 求样本协方差矩阵 对协方差矩阵进行特征分解,将特征值从大到小排列 取特征值前d大对应的特征向量\(w_1, w_2, \cdots, w_d\),通过以下变换将n维样本映射到d维 \[x^{'}_i = \begin{bmatrix} w_1^{T}x_i \\ w_2^Tx_i…
PCA降维-最大,最小方差解释
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020216.html 几个特别有用 的链接: 更加深入理解pca,在斯坦福大学的机器学习上的更加深入的分析.. http://blog.csdn.net/ybdesire/article/details/64546435 http://blog.csdn.n…
降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数据能够有大的方差. 为什么呢? 因为每一维的方差越大,说明数据之间区分度高,想象一个极端的情况,降维之后的数据集所有维度 都是一样的值,方差为0,那么数据就没什么意义了,因为退化成了一条数据. 二维图生动形象 推导过程 对于n个样本,m维特征 (v1, v2, v3 ... vn), vi是m…
PCA与ICA
关于机器学习理论方面的研究,最好阅读英文原版的学术论文.PCA主要作用是数据降维,而ICA主要作用是盲信号分离.在讲述理论依据之前,先思考以下几个问题:真实的数据训练总是存在以下几个问题: ①特征冗余情况,比如建立文档-词频矩阵过程中,"learn"和"study"两个特征,从VSM(计算文档向量间的相似度,Lucene评分机制由此推导而来)角度来看,两者独立,但是从语义角度看,是冗余的…… ②特征强相关性,两个特征间具有很强的相关性,需要去除其中一个…… ③训练样…
PCA 主成分分析(Principal components analysis )
问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩.我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关.那是不是可以合并第一项和第二项呢? 3. 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合.比如北京的房价:假设房子…
一篇深入剖析PCA的好文
主成分分析(Principal components analysis)-最大方差解释 在这一篇之前的内容是<Factor Analysis>,由于非常理论,打算学完整个课程后再写.在写这篇之前,我阅读了PCA.SVD和LDA.这几个模型相近,却都有自己的特点.本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了.PCA以前也叫做Principal factor analysis. 1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以"…