spark 之knn算法】的更多相关文章

好长时间忙的没写博客了.看到有人问spark的knn,想着做推荐入门总用的knn算法,顺便写篇博客. 作者:R星月  http://www.cnblogs.com/rxingyue/p/6182526.html knn算法的大致如下:    1)算距离:给定测试对象,计算它与训练集中的每个对象的距离    2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻    3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类 这次用spark实现knn算法. 首先要加载数据: 实验就简单点直…
通过knn 算法规则,计算出s2表中的员工所属的类别原始数据:某公司工资表 s1(训练数据)格式:员工ID,员工类别,工作年限,月薪(K为单位)       101       a类       8年    30k[hadoop@h201 sss]$ cat s1.txt 101,a,8,30102,a,6,35103,a,12,42104,b,1,6105,b,1,5106,a,3,50 没有分类的 员工工资表 s2(测试数据)格式:员工ID,  工作年限,  月薪       108    …
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程:只需要加载训练数据: 测试过程:通过之前加载的训练数据,计算测试数据集中各个样本的标签,从而完成测试数据集的标注: 2.代码 具体代码如下: #!/usr/bin/env/ python # -*- coding: utf-8 -*- import csv import random from m…
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数 tile() 如tile(A,n)就是将A重复n次 a = np.array([0, 1, 2]) np.tile(a, 2) array([0,…
学习 machine learning 的最低要求是什么?  我发觉要求可以很低,甚至初中程度已经可以.  首先要学习一点 Python 编程,譬如这两本小孩子用的书:[1][2]便可.   数学方面,只需要知道「两点间距离」的公式(中学的座标几何会读到). 这本书第二章介绍 kNN 算法,包括 Python 程序: 其他章节的数学要求可能不同,但我目的是想说明,很多实用的人工智能的原理,其实也很简单的. kNN 是什么?  For example: 开始时,所有 data points 的 l…
在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅只是简单地存储训练元组,做一些少量工作,在真正进行分类或预测的时候才开始做更多的工作.有点像是平时不努力学习功课,到了考前才开始临时抱佛脚的感觉. KNN(k-nearest-neighbor)算法的思想是找到在输入新数据时,找到与该数据最接近的k个邻居,在这k个邻居中,找到出现次数最多的类别,对其…
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了,然后她就准备在一个在线社交网站搞网恋,但是凡是都有一个选择,按照她以往的经验,她接触了三种人: 1:不喜欢的人 2:魅力一般的人 3:特别有魅力的人 但是啊,尽管发现了这三类人,但是她还是无法甄别她究竟喜欢哪种人.所以她就求助我们,如果给她当这个月老.---------那我们就把这个实践叫做月老实践吧. 二案…
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 KNN算法简介 KNN(k-nearest neighbor的缩写)又叫最近邻算法.是1968年由Cover和Hart提出的一种用于分类和回归的无母数统计方法.什么叫无母统计方法呢,这里作个补充:无母统计方法又称非参数统计学,是统计学的一个分支,适用于母群体情况未明,小样本,母群体分布不为常态也不易转…
转自:http://blog.csdn.net/lyflower/article/details/1728642 文本分类中KNN算法,该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关.因此,采用这种方法可以较好地避免样本的不平衡问题.另外,由于…