没办法,SVD就讲的这么好】的更多相关文章

2)奇异值: 下面谈谈奇异值分解.特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:     假设A是一个N * M的矩阵,那么得到的U是一个N * N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N *…
CLIENT 之前讲过tools里面有大量调用client的东西.为了从源码层面了解rocket,决定啃下client这块骨头. pom 先看pom,看看CLIENT依赖谁.看完后原来是依赖common的.common又依赖remoting的 翻开remoting看了看,都是一些接口定义.明白了,remoting应该是通信协议,公共接口.看来如果讲框架的时候,应该从remoting开始讲. 而common,看名字就知道是个公共包,里面提供了各种公用的东西.先不讲了,用到再看吧. 好的,开始分析源…
转自:https://www.jianshu.com/p/02eeaee4357f?utm_campaign=maleskine&utm_content=note&utm_medium=pc_all_hots&utm_source=recommendation 前言:这几天忙合作方的项目,就在刚刚如期上线了, 才得以得空,闲下来,和大家吹吹牛,讨论讨论技术,吹吹牛逼,打发着这闲淡的时光.话不多说  咋们直接进入正题.讨论一下ZK的分布式锁以及在生产环境中如何优化我们ZK的服务配置.…
在面向对象基础篇中,我们讲述了面向对象的很多基础知识,但也有很多限于篇幅并没有涉及到,这里通过进阶篇来完善补充.本篇将详细介绍Python 类的成员.成员修饰符. 一. python类的成员 以下内容转自http://www.cnblogs.com/wupeiqi/p/4766801.html类的成员可以分为三大类:变量(属性).方法和属性方法. 有的地方也称变量为字段,成员变量就是普通字段,类变量就是静态字段. 注意:所有成员中,只有成员变量(普通字段)的内容保存对象中,即:根据此类创建了多少…
很多人想学习Linux,却不知道怎么着手,甚至不知道Linux有哪些方向,非常迷茫.基于此,我特地写了篇文章介绍Linux方向性问题,没想到一不小心成了爆款: 到什么程度才叫精通 Linux?​ 看完这个回答,相信很多人至少知道了目前 Linux 从业者所从事的几个方向,对于方向选择有个大概的认知. 自我介绍一下.我是良许,本科及硕士所学专业却是机械,毕业后从零开始自学转行 IT,1 年后被世界 500 强外企所录用,目前是 Linux 工程师. 本文将根据我的从业经验及与同行大佬的交流,介绍一…
TCP演进简述 http://www.cnblogs.com/fll/ 一.互联网概述 TCP,即传输控制协议,是目前网络上使用的最多的传输协议,我们知道,整个互联网的体系结构是以IP协议提供的无连接的端到端的报文传输服务为基础,在这种体系结构下,那么端到端的数据传输需要自己来保证数据的可靠性,TCP所作的就是这样的工作,它提供了端到端的数据可靠性的传输,当然,在互联网上没有100%的可靠性保证.正是因为TCP的贡献,所以自从提出后就成为了网络的标准传输协议. 先来看下TCP的是如何保证数据可靠…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam…
能否用讲个故事的方式,由浅入深,通俗易懂地解释一下什么是天使投资,VC,PE 今天在知乎上看到一篇文章,觉得值得一转的,Here. 我给楼主讲个完整点的故事吧.长文慎点,前方高能,自备避雷针.18岁以下者请在父母或监护人指导下阅读此文. ----------------------------------------------我是分割线------------------------------------------------------- 我和东尼大木是一起玩到大的朋友,也有共同的爱好.…
一.一些概念 线性相关:其中一个向量可以由其他向量线性表出. 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0.如果对于一个矩阵A来说它的列是线性无关的,则AX=0,只有0解,此时矩阵A可逆. 秩:线性无关向量个数. 基: 特征向量:向量X经过矩阵A旋转后,与原来的X共线,.即为特征值,表示向量的伸缩.如果把矩阵看成进行线性变化的矩阵(旋转,拉伸),那么特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已.反…
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的 文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在 大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与…
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:…
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在…
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
SVD简介 SVD不仅是一个数学问题,在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing)或隐性语义分析(Latent Semantic Analysis).另外在工程应用中的很多地方都有它的身影,例如在推荐系统方面.在2006年末,电影公司Netflix曾经举办一个奖金为100万刀乐的大赛,这笔奖金会颁给比当时最好系统还…
前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景.奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大…
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是由于SVD能够说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章.本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似.本节讨论的矩阵都是实数矩阵. 基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外全部元素都为零的方阵 3.…
一.奇异值分解SVD 1.SVD原理 SVD将矩阵分为三个矩阵的乘积,公式: 中间矩阵∑为对角阵,对角元素值为Data矩阵特征值λi,且已经从大到小排序,即使去掉特征值小的那些特征,依然可以很好地重构出原始矩阵.如下图:其中阴影部分代表去掉小特征值,重构时的三个矩阵. 如果m代表商品个数,n代表用户个数,则U矩阵每行代表商品属性,现在通过降维U矩阵(取阴影部分)后,每个商品的属性可以用更低的维度表示(假设k维).这样当新来一个用户的商品推荐向量X,则可以根据公式X*U1*inv(S1)得到一个k…
原文:十天学Linux内核之第十天---总结篇(kconfig和Makefile & 讲不出再见) 非常开心能够和大家一起分享这些,让我受益匪浅,感激之情也溢于言表,,code monkey的话少,没办法煽情了,,,,,,,冬天的风,吹得伤怀,倒叙往事,褪成空白~学校的人越来越少了,就像那年我们小年之后再回家的场景一样,到处荒芜,然而我们的激情却不褪去,依然狂躁在实验室凌晨两点半的星空里,也许今天又会是这样的一年,不一样的是身边的人变成学弟学妹了,而我们几个大三老家伙依然在,为自己喜欢的事情,为…
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章.本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似.本节讨论的矩阵都是实数矩阵. 基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵 3.…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分解,英文全称为Singular Value Decomposition.首先我们要明白,SVD是众多的矩阵分解技术中的一种,矩阵分解方式很多,如三角分解(LU分解.LDU分解.乔列斯基分解等).QR分解及这里所说的奇异值分解:其次,singular是奇特的.突出的.非凡的意思,从分解的过程及意义来看…
本文以NMF和经典SVD为例,讲一讲矩阵分解在推荐系统中的应用. 数据 item\user Ben Tom John Fred item 1 5 5 0 5 item 2 5 0 3 4 item 3 3 4 0 3 item 4 0 0 5 3 item 5 5 4 4 5 item 6 5 4 5 5 user\item item 1 item 2 item 3 item 4 item 5 item 6 Ben 5 5 3 0 5 5 Tom 5 0 4 0 4 4 John 0 3 0 5…
什么是session Session一般译作会话,牛津词典对其的解释是进行某活动连续的一段时间.从不同的层面看待session,它有着类似但不全然相同的含义.比如,在web应用的用户看来,他打开浏览器访问一个电子商务网站,登录.并完成购物直到关闭浏览器,这是一个会话.而在web应用的开发者开来,用户登录时我需要创建一个数据结构以存储用户的登录信息,这个结构也叫做session.因此在谈论session的时候要注意上下文环境. 为什么用session session用来解决http无状态的问题 什…
16汇编完结Call变为函数以及指令的最后讲解 学了10天的16位汇编,这一讲就结束了,这里总结一下昨天的LOOP指令的缺陷,因为lOOP指令的缺陷,所以我们都改为下面的汇编代码使用了,自己去写,其中条件是你自己写的 请看汇编代码: do while 的汇编代码 WHILE: mov ax,ax cmp ax, jl WHILE while 的汇编代码 WHILE: cmp ax, jge WHILE_END mov ax,ax jmp WHILE WHILE_END: 一丶Call指令(子程序…
引言 为什么写这篇文章? 博主的<分布式之消息队列复习精讲>得到了大家的好评,内心诚惶诚恐,想着再出一篇关于复习精讲的文章.但是还是要说明一下,复习精讲的文章偏面试准备,真正在开发过程中,还是脚踏实地,一步一个脚印,不要投机取巧. 考虑到绝大部分写业务的程序员,在实际开发中使用redis的时候,只会setvalue和getvalue两个操作,对redis整体缺乏一个认知.又恰逢博主某个同事下周要去培训redis,所以博主斗胆以redis为题材,对redis常见问题做一个总结,希望能够弥补大家的…
  以最简单的方式讲HashMap HashMap可以说是面试中最常出现的名词,这次头条的一面,第一个问的问题就是HashMap.所以就让我们来探讨下HashMap吧. 实验环境:JDK1.8 首先先说一下,和JDK1.7相比,对HashMap做了一些优化,使得HashMap的性能更加的优化. HashMap的储存结构 HashMap中的Hash HashMap是怎么保存数据的 HashMap的扩容操作 HashMap的线程安全问题 HashMap的储存结构 只有当我们知道HashMap的储存结…
最近学习hadoop以及生态,顺便看到了这篇文章,总结的很到位,转载下. 我今天要讲这三个话题,一个是云计算,一个大数据,一个人工智能,我为什么要讲这三个东西呢?因为这三个东西现在非常非常的火,它们之间好像互相有关系,一般谈云计算的时候也会提到大数据,谈人工智能的时候也会提大数据,谈人工智能的时候也会提云计算.所以说感觉他们又相辅相成不可分割,如果是非技术的人员来讲可能比较难理解说这三个之间的相互关系,所以有必要解释一下. 一.云计算最初是实现资源管理的灵活性 我们首先来说云计算,云计算最初的目…