[hdu 1568] Fibonacci数列前4位】的更多相关文章

2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来.接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了.所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住.于是他决定编写一个程序来测验zouyu说的是否正确.   Input 输入若干数字n(0 <= n <…
转载自:http://blog.csdn.net/thearcticocean/article/details/47615241 分析:x=1234567.求其前四位数: log10(x)=log10(1.234567)+6. 所以1.234567=10^(log10(x)-6). 1234 =(int) 10^(log10(x)-6)*1000. [6=length-4,length=(int)log10(x)+1]同时我们知道: 对于小于10000的数字可以存储在数组中直接输出,大于等于10…
程序说明:求Fibonacci数列前m个中偶数位的数: 这是编译原理作业,本打算写 求Fibonacci数列前m个数:写了半天,不会写,就放弃了: 程序代码如下: var n1,n2,m,i; procedure panduan; begin i:=2; while i<m do begin n1:=n1+n2; n2:=n1+n2; i:=i+1; write(n2); end; end; begin read(m); n1:=1; n2:=1; if m=2 then write(n1,n2…
Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来. 接下来,CodeStar决定要考考他,于是每问他一…
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1568 分析:一道数学题 找出斐波那契数列的通项公式,再利用对数的性质就可得到前几位的数 斐波那契通项公式如下: 取完对数后(记fn为第n个数) log10(fn)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n)  其中f=(sqrt(5.0)+1.0)/2.0; 最后取对数的小数部分就可得最终结果 代码如…
Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来.接下来,CodeStar决定要考考他,于是每问他一个数…
Fibonacci Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来.接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了.所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住.于是他决定编写一个程序来测验zouyu说的是否正确.   Inpu…
1.斐波那契数列: 又称黄金分割数列,指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*), 即这个数列从第二项开始,每一项都等于前两项之和 特别指出:0是第0项,不是第1项 2.递归算法: 说明:程序调用自身的编程技巧称为递归( recursion). 一个过程或函数在其定义或说明中又直接或间接调用自身的一…
题解:首先,对于小于10000的斐波那契数,我们直接计算,当大于10000时,用公式,由于只要输出前四位,所以不用考虑浮点数的问题,算出其取log的结果: tmp=(log(sq5/5)+n*log(0.5+sq5/2))/log(10.0) 然而为什么要取log呢,考虑这样的情况,若结果前四位为1493,那么计算的结果一定是log(10^n*1.493……)=log(1.493……)+n,那么只要减去整数部分,就得到log(1.493……), 将结果加3,得到log(1.493……)+3=lo…
前段时间老师在讲函数调用的时候,用Fibonacci数列来演示了一下,因为以前没怎么接触过Fibonacci,所以当时很懵. 当时让求的是Fibonacci数列中,第N位值为多少,当时老师写的是: 之后呢,老师留的做作业是:求Fibonacci数列前N位的和,晚上自习的时候在想,求和的话必须需要用For循环,懵懵懂懂的写下了以下代码: public class Fibonacci{ public static void main(String[] args){ ; //声明一个int类型的变量i…