最近,有一份数据,是关于学校的数据,这个里面有所有学生的信息,今天闲来没事,我就想用spark的方式来读取文件,并且来统计这个学校的各个民族的情况,以前我用hadoop中mapReduce来计算,不得不说,又麻烦计算速度又慢首先,我们先看看这份数据长什么样子? 我在这个操作的时候,以为数据都是全的,没想到这个有一行的数据缺了几个,当时在mapReduce,缺了的话,对数据也没影响,还是能照样跑,但是这个不行,spark里面直接报数据越界的异常,所以我就提前判断了一下长度 package cn.w…
利用python来操作spark的词频统计,现将过程分享如下: 1.新建项目:(这里是在已有的项目中创建的,可单独创建wordcount项目) ①新建txt文件: wordcount.txt (文件内容: 跟词频统计(一)中文件一致) ②创建py文件: word.py from pyspark import SparkContext from pyspark import SparkConf conf = SparkConf().setAppName('word').setMaster('loc…
昨天写完R脚本 没测试就发到博客里, 结果实际运行发现很慢,运行时间在2小时以上, 查看spark控制台, 大量时间消耗在count上, 产生的stage多大70多个 . 分析原因. 1  select *可以优化,  2 join操作可以放倒hive sql里的尽量放到hive sql里 这两个优化, 最终目的都是为了减少I/O操作.  hive数据到spark cache的数据量可以减少. 而且可能hive对join操作也有特别的优化. 这两个优化带来的坏处也是显而易见的, 代码可读性下降,…
#include<stdio.h> #include<iostream> #include<string.h> #include <fstream> #include<time.h> #include<windows.h> #include<algorithm> #include<vector> #include <stdlib.h> using namespace std; ; struct Cl…
写了一个简单的语句,还没有优化: scala> sc. | textFile("/etc/profile"). | flatMap((s:String)=>s.split("\\s")). | map(_.toUpperCase). | map((s:String)=>(s, 1)). | filter((pair)=>pair._1.forall((ch)=>ch>'A'&&ch<'Z')). | redu…
import java.text.SimpleDateFormat import java.util.Date val s=NowDate() //显示当前的具体时间 val now=new Date() { 你的Spark程序........ } val now2: Date=new Date() val now3=now2.getTime -now.getTime val dateFormat: SimpleDateFormat = new SimpleDateFormat("mm:ss&q…
一.题目描述 (1)请编写Spark应用程序,该程序可以在分布式文件系统HDFS中生成一个数据文件peopleage.txt,数据文件包含若干行(比如1000行,或者100万行等等)记录,每行记录只包含两列数据,第1列是序号,第2列是年龄.效果如下: 1 89 2 67 3 69 4 78 (2)请编写Spark应用程序,对分布式文件系统HDFS中的数据文件peopleage.txt的数据进行处理,计算出所有人口的平均年龄. 二.实现 1.在分布式文件系统HDFS中生成一个数据文件peoplea…
一.题目描述 (1)编写Spark应用程序,该程序可以在本地文件系统中生成一个数据文件peopleage.txt,数据文件包含若干行(比如1000行,或者100万行等等)记录,每行记录只包含两列数据,第1列是序号,第2列是年龄.效果如下: 1 89 2 67 3 69 4 78 (2)编写Spark应用程序,对本地文件系统中的数据文件peopleage.txt的数据进行处理,计算出所有人口的平均年龄. 二.实现 1.生成数据文件peopleage.txt 1)创建程序的目录结构 创建一个存放代码…
组织数据形式: aa 11 bb 11 cc 34 aa 22 bb 67 cc 29 aa 36 bb 33 cc 30 aa 42 bb 44 cc 49 需求: 1.对上述数据按key值进行分组 2.对分组后的值进行排序 3.截取分组后值得top 3位以key-value形式返回结果 答案如下: val groupTopNRdd = sc.textFile("hdfs://db02:8020/user/hadoop/groupsorttop/groupsorttop.data")…
ps -ef|grep httpd|wc -l 统计httpd进程数,连个请求会启动一个进程,使用于Apache服务器. 查看Apache的并发请求数及其TCP连接状态:netstat -n | awk '/^tcp/ {++S[$NF]} END {for (a in S) print a, S[a]}' 使用 netstat 实时监控IP连接数 如果服务器被流量攻击,或其它需要查看IP连接数的场景,可以使用下面的命令实时监控各IP的连接数,如果有一个IP连接有很多个,明显超出正常范围的,就可…
有一个数据表,id user_id score 三个字段,计算总成绩最高的前两名 SELECT * FROM (SELECT user_name,SUM(score) AS score FROM user GROUP BY user_name) AS t ORDER BY t.score DESC LIMIT 2…
代码场景: 1)设定的几种数据场景,遍历所有场景:依次统计满足每种场景条件下的数据,并把统计结果存入hive: 2)已有代码如下: case class IndoorOTTCalibrateBuildingVecotrLegend(oid: Int, minHeight: Int, maxHeight: Int, minGridIDCount: Int, maxGridIDCount: Int, heightType: Int) extends Serializable // 实例化建筑物区间段…
一些名词概念 AM : ApplicationMaster RM : ResourceManager NM : NodeManager Backend : 后台 RpcEnv : RPC 进程和进程的通信协议 RpcEndpoint : 终端 constructor -> onStart -> receive* -> onStop RpcEndpointRef :终端引用 NettyRpcEnv RpcEndpointAddress NettyRpcEndpointRef ThreadS…
1. 问题描述 记录关联问题(Record Linkage):有大量从一个或多个源系统来的记录,其中有些记录可能代表了相同的基础实体. 每个实体有若干个属性,比如姓名.地址.生日.我们需要根据这些属性找到那些代表相同实体的记录. 不幸的是,有些属性值有问题:格式不一致,或有笔误,或信息缺失.如果简单的对这些属性做相等性测试,就会漏掉很多重复记录. 可以看出,下面两条记录看起来是两个不同的咖啡店,其实是同一个咖啡店: 而下面两条记录看起来是两条相同的记录,却是两个不同的业务部门: 2. 样例数据:…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
1.1 什么是Spark ​ Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. ​ 一站式管理大数据的所有场景(批处理,流处理,sql) ​ spark不涉及到数据的存储,只做数据的计算 ​ Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点: ​ 但不同于MapReduce的是Job中间输出结果可以保存在内存中,…
  第1章 Spark 整体概述 1.1 整体概念   Apache Spark 是一个开源的通用集群计算系统,它提供了 High-level 编程 API,支持 Scala.Java 和 Python 三种编程语言.Spark 内核使用 Scala 语言编写,通过基于 Scala 的函数式编程特性,在不同的计算层面进行抽象,代码设计非常优秀. 1.2 RDD 抽象   RDD(Resilient Distributed Datasets),弹性分布式数据集,它是对分布式数据集的一种内存抽象,通…
Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 三.使用本地文件和HDFS创建RDD 3.1 Java---使用本地文件创建RDD 3.2 Scala---使用本地文件创建RDD 四.RDD持久化原理 五.不使用RDD持久化的问题的原理 六.RDD持久化工作的原理 七.RDD持久化策略 八.如何选择RDD持久化策略 一.创建RDD 二.并行化集…
一.前言 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS).影像存档和通信系统(PACS).电子病历系统(EMR)和区域医疗卫生服务(GMIS)等成功实施与普及推广,而且随着日新月异的计算机技术和网络技术的革新,进一步为数字化医院带来新的交互渠道譬如:远程医疗服务,网上挂号预约. 随着IT技术的飞速发展,80%以上的三级医院都相继建立了自己的医院信息系统…
在认识客观世界的过程中,统计学的思想和方法经常起着不可替代的作用.在许多工程及自然科学的专业领域中,包括可靠性分析.质量控制.生物信息.脑科学.心理分析.经济分析.金融风险管理.社会科学推断.行为科学等,统计分析方法已经成为基本的数据分析与信息分析工具. 在科学研究和实际问题的处理过程中,往往需要面对数据的分析和处理.这些数据虽然包含了大量的信息,但对所关心的问题而言,还需要对数据进行一定的处理才能从中提炼出有用的信息.那么如何从这些收集到的数据中获取所关心的信息呢?统计学提供相应的思想和方法,…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spark的用户程序,包含了一个Driver Program 和集群中多个的Executor: l驱动程序(Driver Program):运行Application的main()函数并且创建SparkContext,通常用SparkContext代表Driver Program: l执行单元(Executor):…
Storm与Spark:谁才是我们的实时处理利器 ——实时商务智能目前已经逐步迈入主流,而Storm与Spark开源项目的支持无疑在其中起到了显著的推动作用.那么问题来了:实时处理到底哪家强? 实时商务智能这一构想早已算不得什么新生事物(早在2006年维基百科中就出现了关于这一概念的页面).然而尽管人们多年来一直在对此类方案进行探讨,我却发现很多企业实际上尚未就此规划出明确发展思路.甚至没能真正意识到其中蕴含的巨大效益. 为什么会这样?一大原因在于目前市场上的实时商务智能与分析工具仍然非常有限.…
原文地址 实时商务智能这一构想早已算不得什么新生事物(早在2006年维基百科中就出现了关于这一概念的页面).然而尽管人们多年来一直在对此类方案进行探讨,我却发现很多企业实际上尚未就此规划出明确发展思路.甚至没能真正意识到其中蕴含的巨大效益. 为什么会这样?一大原因在于目前市场上的实时商务智能与分析工具仍然非常有限.传统数据仓库环境针对的主要是批量处理流程,这类方案要么延迟极高.要么成本惊人--当然,也可能二者兼具. 然而已经有多款强大而且易于使用的开源平台开始兴起,欲彻底扭转目前的不利局面.其中…
Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析.Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部分的代码只有63个Scala文件,非常轻量级. Spark 提供了与 Hadoop 相似的开源集群计算环境,但基于内存和迭代优化的设计,Spark 在某些工作负载表现更优秀. 在2014上半年,Spark开源生态系统得到了大幅增长,已成为大数据领域最活跃的开源项目之一,当下已活跃在Hortonworks.IBM.Cloudera.…
一.前言 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS).影像存档和通信系统(PACS).电子病历系统(EMR)和区域医疗卫生服务(GMIS)等成功实施与普及推广,而且随着日新月异的计算机技术和网络技术的革新,进一步为数字化医院带来新的交互渠道譬如:远程医疗服务,网上挂号预约. 随着IT技术的飞速发展,80%以上的三级医院都相继建立了自己的医院信息系统…
大数据为什么要选择Spark Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析. Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部分的代码只有63个Scala文件,非常轻量级. Spark 提供了与 Hadoop 相似的开源集群计算环境,但基于内存和迭代优化的设计,Spark 在某些工作负载表现更优秀. 在2014上半年,Spark开源生态系统得到了大幅增长,已成为大数据领域最活跃的开源项目之一,当下已活跃在Hortonwor…
Spark作为一个开源数据处理框架,它在数据计算过程中把中间数据直接缓存到内存里,能大大提高处理速度,特别是复杂的迭代计算.Spark主要包括SparkSQL,SparkStreaming,Spark MLLib以及图计算. Spark核心概念简介 1.RDD即弹性分布式数据集,通过RDD可以执行各种算子实现数据处理和计算.比如用Spark做统计词频,即拿到一串文字进行WordCount,可以把这个文字数据load到RDD之后,调用map.reducebyKey 算子,最后执行count动作触发…
在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spark 实现数据分析以及如何对大量存放于文本文件的数据进行转换和分析.瓦迪姆还做了一个基准测试用来比较 MySQL 和 Spark with Parquet 柱状格式 (使用空中交通性能数据) 二者的性能. 这个测试非常棒,但如果我们不希望将数据从 MySQL 移到其他的存储系统中,而是继续在已有的…
1.背景介绍 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS).影像存档和通信系统(PACS).电子病历系统(EMR)和区域医疗卫生服务(GMIS)等成功实施与普及推广,而且随着日新月异的计算机技术和网络技术的革新,进一步为数字化医院带来新的交互渠道譬如:远程医疗服务,网上挂号预约. 随着IT技术的飞速发展,80%以上的三级医院都相继建立了自己的医院信息…
快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scala 和 Python 来编写应用程序. 为了继续阅读本指南, 首先从 Spark 官网 下载 Spark 的发行包.因为我们将不使用 HDFS, 所以你可以下载一个任何 Hadoop 版…