机器学习KNN实例之数字识别】的更多相关文章

一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大或太小,k值含义,是最后选取距离最近的前k个参照点的类标,统计次数最多的记为待测点类标. 二.关于kNN实现手写数字识别 1,手写数字训练集测试集的数据格式,本篇文章说明的是<机器学习实战>书提供的文件,将所有数字已经转化成32*32灰度矩阵. 三.代码结构构成 1,data_Prepare.py…
0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD随机梯度下降模型,Stochastic Gradient Descent 3. SVC支持向量分类模型,Support Vector Classification 4. MLP多层神经网络模型,Multi-Layer Perceptron 主要内容:生成手写体随机数1-9,生成单个png分类存入指定…
文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本文采用PCA+KNN的方法进行kaggle手写数字识别,训练数据共有42000行,每行代表一幅数字图片,共有784列(一副数字图像是28*28像素,将一副图像展开为一行即784),更多关于Digit Recognizer项目的介绍https://www.kaggle.com/c/digit-recogniz…
# 导包 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier # 获取数据 feature = [] target = [] for i in range(10): for j in range(1,501): img_arr = plt.imread('F:/data/%d/%d_%d.bmp'%(i,i,j)) feature.append(…
import numpy as np import matplotlib .pyplot as plt from sklearn.neighbors import KNeighborsClassifier 读取样本数据,图片 样本数据的提取 特征:每一张图片对应的numpy数组 目标:0,1,2,3,4,5,6,7,8,9 feature = [] target = [] for i in range(10):#i:0-9表示的是文件夹的名称 for j in range(1,501):#j:1…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
尝试一些用KNN来做数字识别,测试数据来自:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burgeshttp://yann.lecun.com/exdb/mnist/ 1.数据将位图转为向量(数组),k尝试取值3-15,距离计算采用欧式距离.d(x,y)=\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2} 2.测试调整k的取值和基础样本数量,测试得出k取值对识别正确率的影响,以及分类识…
1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. K邻近算法原理很简单,但是真正用好它也不容易,比如K的取值到底为多少才合适,而且知道什么场景下用它更不简单. 缺点:  该算法的执行效率并不高,每次计算都需要将 待识别的用例 与所有测试用例进行求差计算,计算量较大.随着测…
引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考虑到数据中可能存在噪音,还引入了松弛变量. 理论是抽象的,问题是具体的.站在岸上学不会游泳,光看着梨子不可能知道梨子的滋味.本篇博客就是用SVM分类算法解决一个经典的机器学习问题--手写数字识别.体会一下SVM算法的具体过程,理理它的一般性的思路. 问题的提出 人类视觉系统是世界上众多的奇迹之一.看…