最大公约数(gcd模板)】的更多相关文章

int gcd(int a,int b) { ) { int t=a%b; a=b; b=t; } return a; }…
1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 import java.util.Scanner; public class Main { static int gcd(int a,int b){ return a%b==0? b:gcd(b,a%…
1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 源代码: <span style="font-size:18px;">#include<iostream> #in…
给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD)    最大公约数的递归:  * 1.若a可以整除b,则最大公约数是b  * 2.如果1不成立,最大公约数便是b与a%b的最大公约数  * 示例:求(140,21)  * 140%21 = 14  * 21%14 = 7  * 14%7 = 0  * 返回7 代码如下,非常简单,一行就够了: int GCD(int a,int b) { return a%b?GCD(b,a%b):b; }  二.最小公倍数(…
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x). 1个引理: 假设 k|a, k|b,则对任意的 x,y  ∈ Z, k|(xa+yb)均成立. 证明: k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z) 于是有 xa+yb=xpk+yqk=(xp+yq)k 因为 k|(xp…
最大公约数:gcd 最大公倍数:lcm gcd和lcm的性质:(我觉得主要是第三点性质) 若gcd (…
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约数,那么x|a,x|b; ①由整数除法具有传递性(若x能整除a,x能整除b,那么x可整除a,b的任意线性组合)知x|a-b; ②设x不是b的因子,则x不是b和a-b的公因子:设x不是a的因子,则x不是b和a-b的公因子:所以可以得出GCD(a,b)=GCD(b,a-b); ③由a>=b知,a可表示为a=…
一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: s3:用更相减损法(辗转相减法),即GCD(a,b)=GCD(a-b,b),或辗转相除法求出两奇数的最大公约数d: s4:原来两数的最大公约数即为d*k: 2.简单证明: s1:即为求出两数为2的幂次方的最大公因数k: s2:当化简后两数一奇一偶时,显然奇数是不含偶数因子的,那么另一化简后偶数的所…
输入2个正整数A,B,求A与B的最大公约数. 收起   输入 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) 输出 输出A与B的最大公约数. 输入样例 30 105 输出样例 15代码: #include <iostream> #include <cstdio> #include <cmath> #define MAX 50000 #define PI 3.1415926 using namespace std; int gcd(int a…
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 李陶冶 (题目提供者)   C++的运行时限为:1000 ms ,空间限制为:131072 KB 辗转相除法. 代码实现: #include<cstdio> ; inline ?y:gcd(…