【USACO 3.2.1】阶乘】的更多相关文章

[SinGuLaRiTy-1020] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 1464] Hankson 题目描述 Hanks博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1和c2的最大公约数和最小公倍数.现在Hankson认为自己已经熟练地掌握了这些知识,他开始思考一个“…
[描述] N的阶乘写作N!表示小于等于N的所有正整数的乘积.阶乘会很快的变大,如13!就必须用32位整数类型来存储,70!即使用浮点数也存不下了.你的任务是找到阶乘最后面的非零位.举个例子,5!=1*2*3*4*5=120所以5!的最后面的非零位是2,7!=1*2*3*4*5*6*7=5040,所以最后面的非零位是4.     [格式] PROGRAM NAME: rect4 INPUT FORMAT:(file rect4.in)   共一行,一个整数不大于4,220的整数N. OUTPUT…
题目背景 N的阶乘写作N!,表示小于等于N的所有正整数的乘积. 题目描述 阶乘会变大得很快,如13!就必须用32位整数类型来存储,到了70!即使用浮点数也存不下了. 你的任务是找到阶乘最前面的非零位.举个例子: 5!=1*2*3*4*5=120,所以5!的最靠前的非零位是1. 7!=1*2*3*4*5*6*7=5040,所以最靠前的非零位是5. 输入输出格式 输入格式: 共一行,一个不大于4,220的正整数N 输出格式: 共一行,输出N!最靠后的非零位. 输入输出样例 输入样例#1: 7 输出样…
题目背景 N的阶乘写作N!,表示小于等于N的所有正整数的乘积. 题目描述 阶乘会变大得很快,如13!就必须用32位整数类型来存储,到了70!即使用浮点数也存不下了. 你的任务是找到阶乘最前面的非零位.举个例子: 5!=1*2*3*4*5=120,所以5!的最靠前的非零位是1. 7!=1*2*3*4*5*6*7=5040,所以最靠前的非零位是5. 输入输出格式 输入格式: 共一行,一个不大于4,220的正整数N 输出格式: 共一行,输出N!最靠后的非零位. 输入输出样例 输入样例#1: 7 输出样…
http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成.打牢基础,厚积薄发. 一.UVaOJ http://uva.onlinejudge.org 西班牙Valladolid大学的程序在线评测系统,是历史最悠久.最著名的OJ. 二.<算法竞赛入门经典> 刘汝佳  (UVaOJ  351道题) 以下部分内容摘自:http://sdkd…
下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成.打牢基础,厚积薄发. 一.UVaOJ http://uva.onlinejudge.org 西班牙Valladolid大学的程序在线评测系统,是历史最悠久.最著名的OJ. 二.<算法竞赛入门经典> 刘汝佳  (UVaOJ  351道题) 以下部分内容摘自:http://sdkdacm.5d6d.com/thread-6-1-1.html “AOAPC I”是刘汝佳(大名…
原题传送门 题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12!=1×2×3×4×5×6×7×8×9×10×11×12=479,001,600 12的阶乘最右边的非零位为6. 写一个程序,计算N(1≤N≤50,000,000)阶乘的最右边的非零位的值. 注意:10,000,000!有24999992499999个零. 输入格式 仅一行包含一个正整数N. 输出格式 一个整数,表示最右边的非零位的值. 输入输出样例 输入 #1 12 输出 #1 6 说明/提示 USACO T…
问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*-*n. 算法描述 n!可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法.使用一个数组A来表示一个大整数a,A[0]表示a的个位,A[1]表示a的十位,依次类推. 将a乘以一个整数k变为将数组A的每一个元素都乘以k,请注意处理相应的进位. 首先将a设为1,然后乘2,乘3,当乘到n时,即得到了n!的值. 输入格式 输入包含一个正整数n,n<=1000. 输出格式 输出n!的准确值. 样例输入 10 样例输出 3628…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…
1 .100以内的奇数和偶数 var js = ""; var os = ""; for(var i=1;i<101;i++) { if(i%2 == 0) { os = os+""+i; } else { js = js+""+i; } } alert(os); alert(js); 2 取100以内与7相关的数 var x = ""; for(var i=0;i<101;i++) { if(…