SNA社交网络算法】的更多相关文章

社交网络需要用到igraph库,所以需要安装.可以在lfd的网站 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 上下载python_igraph,具体的python对应版本和是32位还是64位的,比如我下载了 python_igraph‑0.7.1.post6‑cp35‑none‑win_amd64.whl  利用pip 安装whl文件:pip install 文件名.whl  为了避免出错,打开cmd以后,要cd进入你存放的该whl文件的解压后的目录下在…
[NOI2007] 社交网络 ★★   输入文件:network1.in   输出文件:network1.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表…
题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s…
一.问题 1.问题描述: 有n个点(1...n),输入整数对(8,9),表示8,9点之间存在相互的连接关系. 动态连通性问题--编写一段程序过滤掉所以无意义的整数对,即为在不破坏图连通性的前提下,以最简单的方式表示图的连通性.2.实现方案:设计数据结构保存已经存在的整数对,并且用他们来判断新数对是否满足新相连关系.3.实例应用:网络连接问题,电子触电设计,社交网络关系等等 二.解决 1.定义问题--设计api public class UF//(类名大写)     (构造方法) UN(int N…
<社交网络>里的Mark Zackburg被女朋友甩后,在舍友的启发下,充分发挥了技术宅男自娱自乐的恶搞天分,做出了Facemash网站,对学校女生的相貌进行排名打分,结果网站访问流量过大,直接把学校网络搞瘫痪了.Facemask大受欢迎的关键就在于Zackburg基友Eduardo写在窗户上的排名公式,看电影之时就对这个排名公式非常感兴趣,上网了解下,才发现这条公式就是大名鼎鼎的ELO等级分制度.ELO的应用非常广泛,大部分棋类比赛,现在流行的MODB游戏,像11平台的DOTA天梯系统,都是…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
/* 版权声明:可以任意转载,转载时请务必标明文章原始出处和作者信息 .*/                  CopyMiddle: 张俊林 TimeStamp:2012年3 月 在微博环境下,如何自动挖掘某个微博用户的社交圈子或者兴趣圈子是个很基础且重要的问题.如果能够对于某个用户在微博上体现的社交关系进行准确的挖掘,对于很多具体应用来说都有很好的作用,比如可以更好的对用户的兴趣进行挖掘或者能够推荐用户还未关注的社交圈子成员等,或者根据其社交圈子更准确的对用户进行个性化建模,为其它基于用户个…
阅读导读: 1.什么是PeopleRank? 2.PeopleRank和PageRank有什么差别? 3.PR分析微博数据时,怎样对微博单个账号评分? 4.R语言怎样递归计算矩阵特征值? 5.怎样计算粉丝的关注度? 1. PeopleRank和PageRank PageRank让Google成为搜索领域的No.1,也是当今最有影响力的互联网公司之中的一个,用技术创新改变人们的生活.PageRank主要用于网页评分计算,把互联网上的全部网页都进行打分,给网页价值的体现. 自2012以来,中国開始进…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
转自:http://www.gogoqq.com/ASPX/8390905/JournalContent/1303140588.aspx 研究了近半年的算法,记录下来给自己一个交代,也应该是考G前地最后一篇日志了. Weighted Gene Co-Expression Network Analysis中文名有翻译成加权关联网络分析的,感觉不是很恰当,英文来得比较直接.本来是佟昊从老汪那拿的一个课题,因为看起来比较有意思就把文章找来慢慢啃,到现在算是捣鼓出点名堂了.方法是UCLA的一个教授提出来…
Union-Find 算法(中文称并查集算法)是解决动态连通性(Dynamic Conectivity)问题的一种算法,作者以此为实例,讲述了如何分析和改进算法,本节涉及三个算法实现,分别是Quick Find, Quick Union 和 Weighted Quick Union. 动态连通性(Dynamic Connectivity) 动态连通性是计算机图论中的一种数据结构,动态维护图结构中相连接的组信息. 简单的说就是,图中各个点之间是否相连.连接后组成了多少个组等信息.我们称连接在一起就…
     图论,顾名思义就是有图有论.        图:由点"Vertex"和边"Edge "组成,且图分为有向图和无向图(本文讨论有向图),之前做毕业设计的时候研究"多谱流形聚类算法"的时候有研究"Graph".高维数据的聚类就涉及到Graph Cut算法,想象数据为欧式空间的点,数据与数据之间呈现这样或那样的联系,数据就是点,他们的联系由边来决定.PS:本次学习与聚类算法无关,聚类问题具体见之前写的博客.        …
摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的和人工智能领域内的研究热点.数据集中的频繁模式作为一种有价值的信息,受到了人们的广泛关注,成为了数据挖掘技术研究领域内的热门话题和研究重点. 传统的频繁模式挖掘技术被用来在事务数据集中发现频繁项集,然而随着数据挖掘技术应用到非传统领域,单纯的事务数据结构很难对新的领域的数据进行有效的建模.因此,频繁…
相关介绍:  并查集的相关算法,是我见过的,最为之有趣的算法之一.并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.其相关的实现代码较为简短,实现思想也简单易懂,处理问题的效率也高,解决的问题范围也较广.  为了实现并查集的相关算法,我们规定将对象称之为触点,将整数对称之为连接,将两两之间彼此互不相连的各个集合的分布(也就是其相关的等价类)称之为连通分量,也称为分量.同时定义了如下的API用来封装其所需的基本操作: public class UF…
看到一个很有意思的算法,而且腾讯朋友圈lookalike一文中也有提及到,于是蹭一波热点,学习一下.论文是也发KDD2016 . . 一.主要论文:node2vec: Scalable Feature Learning for Networks 本节引用自 a.微博洪亮劼 :[论文每日读]node2vec: Scalable Feature Learning for Networks b.简书:node2vec: Scalable Feature Learning for Networks 本文…
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 实现此算法需要准备以下的包: • matplotlib,用于绘图 • numpy,数组处理库 我一般是用pip安装,若不熟悉这些库,可以搜索一下它们的简单教程. 二. 基本思想  假设存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签.输入测试数据后,通过采用测量不同特征值之间的距离进行分类,即挑选前k个最相似的样本数据.最后,选择k个最相似数据中出现次数最多的分类,作为测试数据…
基本思想 基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分.根据不同用户对相同商品或内容的态度和偏好程度计算用户之间的关系.在有相同喜好的用户间进行商品推荐.简单的说就是如果A,B两个用户都购买了x.y.z三本图书,并且给出了5星的好评.那么A和B就属于同一类用户.可以将A看过的图书w也推荐给用户B.   基于用户协同过滤算法的原理图 所以,协同过滤算法主要分为两个步骤: 1.寻找相似的用户集合: 2.寻找集…
http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之社交网络之社区检测:高级技巧-线性代数方法 Communities in Social Networks:  Intuitively, "communities" are sets of individuals in a network like Fa…
http://blog.csdn.net/pipisorry/article/details/49052057 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之社交网络之社区检测:基本技巧-生成模型及其参数的梯度上升方法求解 Communities in Social Networks:  Intuitively, "communities" are sets of individuals in a netw…
1. 社团划分 0x1:社区是什么 在社交网络中,用户相当于每一个点,用户之间通过互相的关注关系构成了整个网络的结构. 在这样的网络中,有的用户之间的连接较为紧密,有的用户之间的连接关系较为稀疏.其中连接较为紧密的部分可以被看成一个社区,其内部的节点之间有较为紧密的连接,而在两个社区间则相对连接较为稀疏. 整个整体的结构被称为社团结构.如下图,红色的黑色的点集呈现出社区的结构, 用红色的点和黑色的点对其进行标注,整个网络被划分成了两个部分,其中,这两个部分的内部连接较为紧密,而这两个社区之间的连…
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用.本文将讲述进一步扩展其应用场景:首先是User-Item协同聚类,即spectral coclustering,之后再详述谱聚类的进一步优化. 1 Spectral Coclustering 1.1 协同聚类(Coclustering) 在数据分析中,聚类是最常见的一种方法,对于一般的聚类算法(kmeans, spectral clusterin…
当地时间 9 月 13 日,马斯克在自己的个人推特账号上转推了一篇名为<Hackers Have Already Started to Weaponize Artificial Intelligence>(编译:黑客们已经开始武器化人工智能)的文章.以下为博客节选内容. 来自安全公司 ZeroFOX 的两位数据科学家进行了一次实验,他们希望看看人类和人工智能相比,究竟谁更容易让推特用户点击恶意链接.于是,研究人员让人工智能研究社交网络用户的行为,然后设计并实施自己的网络钓鱼诱饵.从测试结果,人…
本文作者 Eugene Wei 是 Amazon 战略部门的第一位分析师,后来还担任过 Flipboard, Hulu, Oculus 的产品负责人. 原文标题是 Status as a Service (StaaS).作者对社交网络做了深入而全面的分析. 原文共 26 个章节. 前 5 章的译文在这里.本文是第 6 章和第 7 章的译文. 如果你感兴趣,推荐直接看 原文. Facebook 最初的工作量证明 你可能会好奇,相比 MySpace,Facebook 当年是如何做到差异化的?刚开始的…
CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是International Conference on Information and Knowledge Management,属于信息检索和数据挖掘领域的国际著名学术会议,由ACM SIGIR分会(ACM Special Interest Group on Information Retrieval)主办.…
推文<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>笔记 从17年5月份开始接触Graph Embedding,学术论文读了很多,但是一直不清楚这技术是否真的能应用于工业界? 最近导师转发给我一篇文章,名为<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>,眼界大开! 今天就阅读这篇推文,做一些摘录和笔记...侵删! 传送门:http://mp.weixin.qq.com/s/diIzbc0tpCW4xhbIQu…
add by zhj:同时也看看国外牛逼公司是怎么做的吧 Stream-Framework    Python实现的feed Twitter 2013 Redis based, database fallback, very similar to Fashiolista's old approach. Etsy feed scaling (Gearman, separate scoring and aggregation steps, rollups - aggregation part two…
最近需要对商品中的特有的词识别,因此需新词发现算法,matrix的这篇算法很好. 对中文资料进行自然语言处理时,我们会遇到很多其他语言不会有的困难,例如分词——汉语的词与词之间没有空格,那计算机怎么才知道“已结婚的和尚未结婚的”究竟是“已/结婚/的/和/尚未/结婚/的”,还是“已/结婚/的/和尚/未/结婚/的”呢? 这就是所谓的分词歧义难题.不过,现在很多语言模型都已能比较漂亮地解决这一问题了.但在中文分词领域里,还有一个比分词歧义更令人头疼的东西—— 未登录词.中文没有首字母大写,专名号也被取…
一.概念 复杂网络:现实生活中各种系统都可以看做成复杂网络,复杂网络构成包括节点和边,节点是网络中的基本组成单元,节点之间的联系或者关系是网络中的边.例如 电力网络:基站代表节点,基站之间是否互通表示边: 社交网络:用户代表节点,用户的关注关系表示边: 万维网络:网页代表节点,网页的链接关系代表边: 交通运输网络,神经网络,经济贸易网络,科学家合作网络等等 社区发现:社区发现在数据挖掘领域有重要的作用,在一个网络中,如果一个团体有共同的爱好或者特征,并紧密联系在一起,那么我们称网络中这个小集体为…
谷歌的强不是强在 PageRank 算法,而在于它是第一个在排名时把链接——而不只是文字和标题——考虑进去的.又以自己教的数据挖掘课为例.他让学生以 Netflix 用户对一万八千多部电影的打分为基础数据,写程序为她们推荐别的电影.其中有组学生的算法较优,另外一组学生算法一般,但使用了外部数据——IMDB 对电影类型的归类.结果第二组的结果胜过了第一组. 那么到底是数据重要还是算法重要呢? 来自Rio的观点: ———————————————————————————————————————————…