(转)KL散度的理解】的更多相关文章

原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释得非常清晰易懂,建议阅读 相对熵,又称KL散度( Kullback–Leibler divergence),是描述两个概率分布P和Q差异的一种方法.它是非对称的,这意味着D(P||Q) ≠ D(Q||P). KL散度的计算 衡量近似分布带来的信息损失. KL散度的计算公式其实是熵计算公式的简单变形,…
KL散度(KL divergence) 全称:Kullback-Leibler Divergence. 用途:比较两个概率分布的接近程度.在统计应用中,我们经常需要用一个简单的,近似的概率分布 f * 来描述. 观察数据 D 或者另一个复杂的概率分布 f .这个时候,我们需要一个量来衡量我们选择的近似分布 f * 相比原分布 f 究竟损失了多少信息量,这就是KL散度起作用的地方. 熵(entropy) 想要考察信息量的损失,就要先确定一个描述信息量的量纲. 在信息论这门学科中,一个很重要的目标就…
以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分布.我们可以用哈夫曼编码作为最佳编码方案编码这些事件,并将多次事件发生的情况信息以哈夫曼编码的形式传递出去. 有一个结论是:在一个数据分布p上,用p对应的最佳编码方案来传递信息,这样传递的信息的期望量.这个期望量也被称为这个数据分布p作为一个信息的信息熵,是一个信息的一种属性. 信息熵就是,在一个数…
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Kullback–Leibler divergence,也称为相对熵,信息增益,它是度量两个概率分布P与Q之间差异的一种不对称度量,可以看做是概率分布P到目标概率Q之间距离.一般情况下,P表示数据的真是分布,Q表示数据的理论分布,也可以理解为影响P分布的一种因素.计算公式为: DKL(P||Q) =ΣP…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain).  KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的信息论,给定…
作者:桂. 时间:2017-04-06  12:29:26 链接:http://www.cnblogs.com/xingshansi/p/6672908.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 之前在梳理最小二乘的时候,矩阵方程有一类可以利用非负矩阵分解(Non-negative matrix factorization, NMF)的方法求解,经常见到别人提起这个算法,打算对此梳理一下.优化问题求解,最基本的是问题描述与准则函数的定义,紧接着才涉及准则函数的求解问题,本文为NMF…
1. KL散度 KL散度又称为相对熵,信息散度,信息增益.KL散度是是两个概率分布 $P$ 和 $Q$  之间差别的非对称性的度量. KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的样本平均所需的额外的位元数. 典型情况下,$P$ 表示数据的真实分布,$Q$ 表示数据的理论分布,模型分布,或 $P$ 的近似分布. 定义如下: 因为对数函数是凸函数,所以KL散度的值为非负数. 有时会将KL散度称为KL距离,但它并不满足距离的性质: KL散度不是对称的,即 $D_{KL} (P||…
https://blog.csdn.net/weixinhum/article/details/85064685 上一篇文章我们简单介绍了信息熵的概念,知道了信息熵可以表达数据的信息量大小,是信息处理一个非常重要的概念. 对于离散型随机变量,信息熵公式如下:H(p)=H(X)=Ex∼p(x)[−logp(x)]=−∑ni=1p(x)logp(x) H ( p ) = H ( X ) = \mathrm { E } _ { x \sim p ( x ) } [ - \log p ( x ) ] =…
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain). KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的…