Tensorflow技巧】的更多相关文章

1.尽量控制图片大小在1024以内,不然显存会爆炸. 2.尽量使用多GPU并行工作,训练下降速度快. 3.当需要被检测的单张图片里物体太多时,记得修改Region_proposals的个数 4.测试的时候单张图片里物体过多记得修改 vis_util.visualize_boxes_and_labels_on_image_array函数里面的 max_boxes_to_draw,这个默认是20. 5.训练的样本,自己造的数据集不要与原始数据集量级差异过大,自己造的数据集过多的话,容易导致模型偏向自…
TensorFlow小技巧整理:修改张量特定元素的值 最近在做一个摘要生成的项目,过程中遇到了很多小问题,从网上查阅了许多别人解决不同问题的方法,自己也在旁边开了个jupyter notebook搞些小实验,这里总结一下遇到的一些问题.Tensorflow用起来不是很顺手,很大原因在于tensor这个玩意儿,并不像数组或者列表那么的直观,直接print的话只能看到 Tensor(-) 这样的提示.比如下面这个问题,我们想要修改张量特定位置上的某个数值,操作起来就相对麻烦一些.和array一样,张…
在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方法,通过减小batch size,也算得到了一个还可以的结果. 那个网络只有两层,而且MINIST数据集的样本量并不算太大.如果神经网络的隐藏层非常多,每层神经元的数量巨大,样本数量也巨大时,可能出现三个问题: 一是梯度消失和梯度爆炸问题,导致反向传播算法难以进行下去: 二是在如此庞大的网络中进行训…
[开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等.但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的结果也是Tensor. 一般情况下我们不会感受到Numpy与Tensor之间的区别,因为TensorFlow网络在输入Nump…
Google开发者大会:你不得不知的Tensorflow小技巧 同步滚动:开   Google Development Days China 2018近日在中国召开了.非常遗憾,小编因为不可抗性因素滞留在合肥,没办法去参加.但是小编的朋友有幸参加了会议,带来了关于tensorlfow的一手资料.这里跟随小编来关注tensorflow在生产环境下的最佳应用情况. Google Brain软件工程师冯亦菲为我们带来了题为“用Tensorflow高层API来进行模型原型设计.训练和生产投入”的精彩报告…
[开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误.以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务. 首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GP…
谷歌开发技术推广工程师 Laurence Moroney 在 Google Cloud Next 大会上进行了一段 42 分钟的演讲,主题是「What's New with TensorFlow?」.本文作者 Cassie Kozyrkov 对该演讲进行了总结,概括出关于 TensorFlow 的九件事.机器之心对本文进行了编译介绍,希望对大家有所帮助. 我总结了今年 Google Cloud Next 大会上我最爱的一段演讲——What's New with TensorFlow?(https…
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf" NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work…
转自:http://blog.csdn.net/stdcoutzyx/article/details/51645396 本片博文是参考文献[1]的阅读笔记,特此声明 TensorFlow,以下简称TF,是Google去年发布的机器学习平台,发布以后由于其速度快,扩展性好,推广速度还是蛮快的.江湖上流传着Google的大战略,Android占领了移动端,TF占领神经网络提供AI服务,未来的趋势恰好是语音图像以及AI的时代,而Google IO上发布的Gbot似乎正是这一交叉领域的初步尝试. TF的…
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6   原文出处: 我爱计算机 (@tobe迪豪 )    作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MX…
今天我们来解析下Tensorflow的Seq2Seq的demo.继上篇博客的PTM模型之后,Tensorflow官方也开放了名为translate的demo,这个demo对比之前的PTM要大了很多(首先,空间上就会需要大约20个G,另外差点把我的硬盘给运行死),但是也实用了很多.模型采用了encoder-decoder的框架结果,佐以attention机制来实现论文中的英语法语翻译功能.同时,模型的基础却来自之前的PTM模型.下面,让我们来一起来了解一下这个神奇的系统吧! 论文介绍及基础描写:…
http://product.dangdang.com/25207334.html 内容 简 介 本书总的指导思想是在掌握深度学习的基本知识和特性的基础上,培养使用TensorFlow进行实际编程以解决图像处理相关问题的能力.全书力求深入浅出,通过通俗易懂的语言和详细的程序分析,介绍TensorFlow的基本用法.高级模型设计和对应的程序编写. 本书共22章,内容包括Python类库的安装和使用.TensorFlow基本数据结构和使用.TensorFlow数据集的创建与读取.人工神经网络.反馈神…
关于本文说明,已同步本人另外一个博客地址位于http://blog.csdn.net/qq_37608890,详见http://blog.csdn.net/qq_37608890/article/details/79352212. 本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.稀疏性(Sparsity)及稀疏编码(Sparse Coding) Sparsity 是当今机器学习领域中的一个…
博客断更了一周,干啥去了?想做个聊天机器人出来,去看教程了,然后大受打击,哭着回来补TensorFlow和自然语言处理的基础了.本来如意算盘打得挺响,作为一个初学者,直接看项目(不是指MINIST手写数字识别这种),哪里不会补哪里,这样不仅能学习到TensorFlow和算法知识,还知道如何在具体项目中应用,学完后还能出来一个项目.是不是要为博主的想法双击666?图样! 现在明白了什么叫基础不牢地动山摇,明白了什么叫步子太大直接就放弃,明白了我是适合循序渐进的学习,暂时不适合对着项目直接干. 同时…
基本回归 回归(Regression):https://www.tensorflow.org/tutorials/keras/basic_regression 主要步骤:数据部分 获取数据(Get the data) 清洗数据(Clean the data) 划分训练集和测试集(Split the data into train and test) 检查数据(Inspect the data) 分离标签(Split features from labels) 规范化数据(Normalize th…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
[开发技巧]·AdaptivePooling与Max/AvgPooling相互转换 个人网站--> http://www.yansongsong.cn/ 1.问题描述 自适应池化Adaptive Pooling是PyTorch的一种池化层,根据1D,2D,3D以及Max与Avg可分为六种形式. 自适应池化Adaptive Pooling与标准的Max/AvgPooling区别在于,自适应池化Adaptive Pooling会根据输入的参数来控制输出output_size,而标准的Max/AvgP…
[开发技巧]·Numpy广播机制的深入理解与应用 1.问题描述 我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作.广播机制很方便,但是概念却也有些复杂,可能会让一些初学者感到困惑,在使用过程中,产生一些错误. 本文以实战演练的方式来讲解广播机制的概念与应用,不仅仅适用于Numpy,在TensorFlow,PyTorch,MxNet的广播机制中同样适用. 2.原理讲解 广播机制遵循一下准则: 1.首先以最长纬度为准拓展为相…
作者:冯牮 前言 本文不是神经网络或机器学习的入门教学,而是通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点 在卷积神经网络适用的领域里,已经出现了一些很经典的图像分类网络,比如 VGG16/VGG19,Inception v1-v4 Net,ResNet 等,这些分类网络通常又都可以作为其他算法中的基础网络结构,尤其是 VGG 网络,被很多其他的算法借鉴,本文也会使用 VGG16 的基础网络结构,但是不会对 VGG 网络做详细的入门教学 虽然本文不是神经网络技术的入门教…
随着TensorFlow发布的,还有一个models库(仓库地址:https://github.com/tensorflow/models),里面包含官方及社群所发布的一些基于TensorFlow实现的模型库,用于解决各式各样的机器学习问题. 很多任务,在其中都能找到相同或者近似功能的实现,这时候无需编程或者只要很少的编程,就可以在已有模型的基础上建立自己的人工智能应用. 而且models的更新也比较快,因为大量的社群参与者,几乎每天都有模块的更新commit. 简介 当前版本TensorFlo…
http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和…
不多说,直接上干货! 前言 建议参照最新的tensorflow安装步骤(Linux,官方网站经常访问不是很稳定,所以给了一个github的地址):         https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/install/install_linux.md 最近,tensorflow网站上给出了新的使用Anaconda配置和安装Tensorflow的步骤,经过测试,在国内可以无障碍的访问.Ana…
1. 概述 原文地址: TensorFlow and deep learning,without a PhD Learn TensorFlow and deep learning, without a Ph.D. B站视频地址: https://www.bilibili.com/video/av8284296 https://www.bilibili.com/video/av16339227 在这个codelab中,您将学习如何创建和训练识别手写数字的神经网络.一路上,随着你增强神经网络的准确率…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 作为一款优秀的异构深度学习算法框架,TensorFlow可以在多种设备上运行算法程序,包括CPU,GPU,Google开发的TPU等.因为TensorFlow的架构特性非常好,可扩展性很强,所以也支持用户自定义补充其他计算设备,比如可以接入FPGA甚至是自定义芯片等.虽然在Google发布的TensorFlow white paper中并没有过多的描述设备管理相关的内容,只是…
一位ML工程师构建深度神经网络的实用技巧 https://mp.weixin.qq.com/s/2gKYtona0Z6szsjaj8c9Vg 作者| Matt H/Daniel R 译者| 婉清 编辑| Jane 出品| AI 科技大本营 [导读]在经历成千上万个小时机器学习训练时间后,计算机并不是唯一学到很多东西的角色,作为开发者和训练者的我们也犯了很多错误,修复了许多错误,从而积累了很多经验.在本文中,作者基于自己的经验(主要基于 TensorFlow)提出了一些训练神经网络的建议,还结合了…
首先选择解释器 选择TensorFlow版本的conda版本 (当然你如果是通过python单独安装的TensorFlow也可以) 编辑器输入代码,进行测试 import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello)) 成功~ https://code.visualstudio.com/docs/python/python-tutorial …
一 初始化RNN 上一节中介绍了 通过cell类构建RNN的函数,其中有一个参数initial_state,即cell初始状态参数,TensorFlow中封装了对其初始化的方法. 1.初始化为0 对于正向或反向,第一个cell传入时没有之前的序列输出值,所以需要对其进行初始化.一般来讲,不用刻意取指定,系统会默认初始化为0,当然也可以手动指定其初始化为0. initial_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) 2.初…
随着科研人员在使用神经网络训练时不断的尝试,为我们留下了很多有用的技巧,合理的运用这些技巧可以使自己的模型得到更好的拟合效果. 一 利用异或数据集演示过拟合 全连接网络虽然在拟合问题上比较强大,但太强大的拟合效果也带来了其它的麻烦,这就是过拟合问题. 首先我们看一个例子,这次将原有的4个异或带护具扩充成了上百个具有异或特征的数据集,然后通过全连接网络将它们进行分类. 实例描述:构建异或数据集模拟样本,在构建一个简单的多层神经网络来拟合其样本特征,观察其出现前泥河的现象,接着通过增大网络复杂性的方…
在第一节中我们已经介绍了一些TensorFlow的编程技巧;第一节,TensorFlow基本用法,但是内容过于偏少,对于TensorFlow的讲解并不多,这一节对之前的内容进行补充,并更加深入了解讲解TensorFlow. TesorFlow的命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算.TensorFlow是张量从图像的一端流动到另一端的计算过程,这也是TensorFlow的编程模型. TensorFlow编程基础上主要介绍session…
*注:教程及本文章皆使用Python3+语言,执行.py文件都是用终端(如果使用Python2+和IDE都会和本文描述有点不符) 一.安装,测试,卸载 TensorFlow官网介绍得很全面,很完美了,各种系统.方式.类别都一一组合介绍了,大家直接点击去官网安装TensorFlow,这里需要注意的是TensorFlow有CPU和GPU版本之分.当然用TensorFlow前得先装好Python的开发环境. *测试安装是否成功的代码时,如果使用的是CPU版本,如果出现错误: sess = tf.Ses…