简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别.     基于密度的聚类算法主要的目标是寻找被低密度区域分离的高密度区域.与基于距离的聚类算法不同的是,基于距离的聚类算法的聚类结果是球状的簇,而基于密度的聚类算法可以发现任意形状的聚类,这对于带有噪音点的数据起着重要的作用. 二.DBSCAN算法的原理 1.基本概念     DBSCAN(Density…
一.基于密度的聚类算法的概述     最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks>引起了大家的关注(在我的博文“论文中的机器学习算法——基于密度峰值的聚类算法”中也进行了中文的描述).于是我就想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别.     基于密度的聚类算法主要的目标是寻找被低密度区域分离的高密度区域.与基于距离的聚类算…
一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类. DBSCAN中的几个定义: Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域: 核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象:…
一.算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类(笔者认为是因为他不是基于距离的,基于距离的发现的是球状簇). 该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给…
一.DBSCAN聚类概述 基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现"球形"聚簇的缺点. DBSCAN的核心思想是从某个核心点出发,不断向密度可达的区域扩张,从而得到一个包含核心点和边界点的最大化区域,区域中任意两点密度相连. 1.伪代码 算法: DBSCAN 输入: E - 半径 MinPts - 给定点在 E 领域内成为核心对象的最小领域点数 D - 集合 输出:目标类簇集合 方法: repeat 1) 判断输入点是否为核心对象 2) 找出核…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义     假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,是方阵,为单位矩阵,的特征向量,的特征…
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一个大类.不停的合并,直到合成了一个类.其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等.比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离. 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerat…
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法的基本思想簇之间距离的定义k均值算法的基本思想k均值算法的流程k均值算法的实现细节问题实验EM算法简介Jensen不等式EM算法的原理推导收敛性证明 聚类算法是无监督学习的典型代表,前边讲过的数据降维算法是无监督学习的另外一种典型代表. 聚类问题简介: 聚类算法的概念第四讲机器学习的基本概念里边已经…
密度峰值聚类算法(DPC) 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 简介 基于密度峰值的聚类算法全称为基于快速搜索和发现密度峰值的聚类算法(clustering by fast search and find of density peaks, DPC).它是2014年在Science上提出的聚类算法,该算法能够自动地发现簇中心,实现任意形状数据的高效聚类. 该算法基于两个基本假设:1)簇中心(密度峰值点)的局部密度大于围绕它的邻居的局部密…