Spark RDD API(scala)】的更多相关文章

1.RDD RDD(Resilient Distributed Dataset弹性分布式数据集)是Spark中抽象的数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据时分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作,从而得到结果. 2.RDD创建 RDD可以从普通数组创建出来,也可以…
处理数据类型为Value型的Transformation算子可以根据RDD变换算子的输入分区与输出分区关系分为以下几种类型. 1)输入分区与输出分区一对一型. 2)输入分区与输出分区多对一型. 3)输入分区与输出分区多对多型. 4)输出分区为输入分区子集型. 5)还有一种特殊的输入与输出分区一对一的算子类型:Cache型.Cache算子对RDD分区进行缓存. 1.输入分区与输出分区一对一型 (1)map 将原来RDD的每个数据项通过map中的用户自定义函数f映射转变为一个新的元素.源码中的map…
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 *********************************************** map(func) 返回一个新的分布式数据集,由每个原元素经过func函数转换后组成 ***********************************************filter(func)返回一个新的数据集,由经过func函数后返回值为true的原元素组成 ***…
如何一步一步地在Intellij IDEA使用Maven搭建spark开发环境,并基于scala编写简单的spark中wordcount实例. 1.准备工作 首先需要在你电脑上安装jdk和scala以及开发工具Intellij IDEA,本文中使用的是win7系统,环境配置如下: jdk1.7.0_15 scala2.10.4 scala官网下载地址:http://www.scala-lang.org/download/ 如果是windows请下载msi安装包. 这两个可以在官网上下载jdk和s…
本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformations 两种操作之行动Actions 惰性求值 RDD持久化Persistence 理解闭包Understanding closures 共享变量Shared Variables 总结 Working with Key-Value Pairs.Shuffle operations.patition…
构建Maven项目,托管jar包 数据格式 //0.fp_nid,1.nsr_id,2.gf_id,2.hydm,3.djzclx_dm,4.kydjrq,5.xgrq,6.je,7.se,8.jshj,9.kpyf,10.kprq,11.zfbz,12.date_key,13.hwmc,14.ggxh,15.dw,16.sl,17.dj,18.je je1,19.se1,20.spbm,21.label (fpid_10000201 115717 (2239 173 2011-07-12 00…
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合. 4. RDD支持的操作: 1)转换操作,由一个RDD生成一个新的RDD. 2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS). 5. Spark程序或者shell会话都会…
   本章介绍了Spark用于数据处理的核心抽象概念,具有弹性的分布式数据集(RDD).一个RDD仅仅是一个分布式的元素集合.在Spark中,所有工作都表示为创建新的RDDs.转换现有的RDD,或者调用RDD上的操作来计算结果.在底层,Spark自动将数据中包含的数据分发到你的集群中,并将你对它们执行的操作进行并行化.数据科学家和工程师都应该阅读这一章,因为RDD是Spark的核心概念.我们强烈建议你在这些例子中尝试一些 交互式shell(参见"Spark的Python和Scala shell的…
Scala进阶之路-Spark独立模式(Standalone)集群部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们知道Hadoop解决了大数据的存储和计算,存储使用HDFS分布式文件系统存储,而计算采用MapReduce框架进行计算,当你在学习MapReduce的操作时,尤其是Hive的时候(因为Hive底层其实仍然调用的MapReduce)是不是觉得MapReduce运行的特别慢?因此目前很多人都转型学习Spark,今天我们就一起学习部署Spark集群吧. 一.准备…
1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> sc.textFile(inputfile) (2)驱动器程序中对一个集合进行并行化===>sc.parallelize(List("pandas","I like pandas")) 2.RDD操作 转化(Transformations)和行动*(Action…