numpy基本函数】的更多相关文章

在学习python的时候常常需要numpy这个库,每次都是用一个查一个,这个,终于见到一个完整的总结了http://blog.csdn.net/blog_empire/article/details/39298557 一.数组方法 创建数组:arange()创建一维数组:array()创建一维或多维数组,其参数是类似于数组的对象,如列表等 读取数组元素:如a[0],a[0,0] 数组变形:如b=a.reshape(2,3,4)将得到原数组变为2*3*4的三维数组后的数组:或是a.shape=(2…
xzcfightingup   python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执…
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html  (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工…
NumPy 目录 关于 numpy numpy 库 numpy 基本操作 numpy 复制操作 numpy 计算 numpy 常用函数 1 关于numpy / About numpy NumPy系统是Python的一种开源的数值计算扩展包.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统.参考官网解释, N…
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用到很多的向量…
2. 创建一般的多维数组 import numpy as np a = np.array([1,2,3], dtype=int)  # 创建1*3维数组   array([1,2,3]) type(a)  # numpy.ndarray类型 a.shape  # 维数信息(3L,) a.dtype.name   # 'int32' a.size   # 元素个数:3 a.itemsize  #每个元素所占用的字节数目:4     b=np.array([[1,2,3],[4,5,6]],dtyp…
基本运算 x**2 : x^2 若x是mat矩阵,那就表示x内每个元素求平方 inf:表示正无穷 逻辑运算符:and,or,not 字典的get方法 a.get(k,d) 1 1 get相当于一条if…else…语句.若k在字典a中,则返回a[k]:若k不在a中,则返回参数d. l = {5:2,3:4} l.get(3,0) 返回值是4: l.get(1,0) 返回值是0: 1 2 3 1 2 3 type函数:返回数据类型 type(x):返回x的类型 type(x)._name_:返回该类…
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间…
  Spark 基本函数学习笔记一¶ spark的函数主要分两类,Transformations和Actions. Transformations为一些数据转换类函数,actions为一些行动类函数: 转换:转换的返回值是一个新的RDD集合,而不是单个值.调用一个变换方法, 不会有任何求值计算,它只获取一个RDD作为参数,然后返回一个新的RDD. 行动:行动操作计算并返回一个新的值.当在一个RDD对象上调用行动函数时, 会在这一时刻计算全部的数据处理查询并返回结果值. 这里介绍pyspark中常…
1.基本类型(array) import numpy as np a=[1,2,3,4] b=np.array(a) #array([1,2,3.4]) type(b) #<type 'numpy.ndarray'> b.shape #(4,) c=[[1,2],[3,4]] #二维列表 d=np.array(c) #二位numpy数组 d.shape #(2,2) d.max(axis=0) #找维度0,列的最大值,即最后一个维度上的最大值,array([3,4]) d.max(axis=1…