【7003】&&【a203】合并多项式】的更多相关文章

Time Limit: 3 second Memory Limit: 2 MB 问题描述      求两个一元多项式的和.输入多项式方式为:多项式项数.每项系数和指数,按指数从大到小的顺序输入.输出多项式方式为:多项式项数.每项系数和指数,按指数从大到小的顺序输出,合并后的系数如果为0,则不输出该项.(假设系数.指数均为整数) Input 输入n+m+2行,第一行输入为第一个多项式的项数n,接下来的n行的是第一个多项式的系数和指数.接着是第二个多项式的项数m,接下来的m行是第二个多项式的系数和指…
方法一:由十字相乘相关理论我们能知道,如果要有p,k,q,m,那么首先要有解,所以b*b-4*a*c要>0,然而因为p,k,q,m是正整数,所以代表x1,x2都是有理数,有理数是什么鬼呢?就是解不带根号,我们知道有求根公式,其中2*a,-b都保证是自然数了,如果根号下b*b-4*a*c也保证是有理数我们就就能保证解是自然数,那么如何保证根号下b*b-4*a*c是有理数呢?那么b*b-4*a*c就是平方数 #pragma comment(linker, "/STACK:1024000000,…
这个问题我是在PAT大区赛题里遇见的.题目如下: 多项式A除以B(25 分) 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出A,再给出B.每行的格式如下: N e[1] c[1] ... e[N] c[N] 其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i]是第i个非零项的系数.各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系…
题目内容: 一个多项式可以表达为x的各次幂与系数乘积的和,比如: 2x6+3x5+12x3+6x+20 现在,你的程序要读入两个多项式,然后输出这两个多项式的和,也就是把对应的幂上的系数相加然后输出. 程序要处理的幂最大为100. 输入格式: 总共要输入两个多项式,每个多项式的输入格式如下: 每行输入两个数字,第一个表示幂次,第二个表示该幂次的系数,所有的系数都是整数.第一行一定是最高幂,最后一行一定是0次幂. 注意第一行和最后一行之间不一定按照幂次降低顺序排列:如果某个幂次的系数为0,就不出现…
1002. A+B for Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue This time, you are supposed to find A+B where A and B are two polynomials. Input Each input file contains one test case. Each case occupies 2 lines, an…
化简符号表达式计算机毕竟还是挺笨的, 经过一系列的符号计算后, 得到的结果可能只有它自己才能看懂, Matlab提供大量函数以用于符号表达式的化简. collect(f): 函数用途是合并多项式中相同的项, 如: syms x tf=(1+x)*t+x*t;collect(f) expand(f):展开多项式, syms xf=x*(x*(x-1)+3)+2;expand(f); horner(f) 对转换多项式为Horner形式, 这种形式的特点是乘法嵌套, 其有着不错的数值计算性质. sym…
其实有原题,生成树计数 然鹅这题里面是两道题, 50pts 可以用上面那题的做法直接过掉,另外 50pts 要推推式子,搞出 O n 的做法才行(毕竟多项式常数之大您是知道的) 虽说这道题里面是没有 a_i 的,也不用分治合并多项式的就是了,所以大致思路看我另一题的题解就好了,这里对于前 50pts 的做法只给出式子: \[ANS_n= {(n-2)! \Big( [x^{n-2}] \big(\sum_{i=0}^\infty (i+1) ^m {x^i \over i! } \big)^n…
原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分别编号为$1\cdots m$,现在让你从中拿$k$个球,问拿到的球的颜色所构成的可重集合有多少种不同的可能. 注意同种颜色球是等价的,但是两个颜色为$x$的球不等价于一个. $1\leq n\leq 2\times 10^5,\ \ \ \ \ 1\leq m,k\leq n$. 题解 来自Hel…
题目: 分析: 对于一个确定的生成子图,很明显是在一个连通块上走,走完了再跳到另一个连通块上,假设连通块个数为cnt,那么答案一定是$min(a_{cnt-1},a_cnt,..,a_{n-1})$  那现在的问题就是如何求出对于原图而言,连通块个数分别为1,2..n的生成子图的个数 我们去考虑每条边的贡献 在一个仙人掌上只有树边和回路上的边,对于树边如果删除那么肯定连通块个数+1,对于回路上的边,删除一条边不影响,再后面每删除一条边连通块个数+1 我们可以写出它们的生成函数,然后乘起来 对于树…
只写函数内部的,不懂得可以看前面一篇文章对链表的实现: pLinklist addBothLinklist(Linklist* first,Linklist* second){ Linklist *newLinklist = NULL; InitLinklist(&newLinklist); while(first != NULL || second != NULL){ int x = (first == NULL)?0:first->data; int y = (second == NUL…