Federal Learning(联邦学习)认知】的更多相关文章

本人是学生党,同时也是小菜鸡一枚,撞运气有机会能够给老师当项目助理,在这个过程中肯定会学到一些有趣的知识,就在此平台上记录一下,在知识点方面有不对的还请各位指正. What(什么是联邦学习?) 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全.保护终端数据和个人数据隐私.保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习.其中,…
联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全.保护终端数据和个人数据隐私.保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习.其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法.联邦学习有望成为下一代人工智能协同算法和协作网络的基础. 联邦学习的系统构架       以包…
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://github.com/WeBankFinTech/FATE谷歌联邦迁移学习TensorFlow Federated (TFF)框架代码:https://www.tensorflow.org/federated/论文Towards Federated Learning at Scale: System Desi…
核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar. "Federated Learning with Only Positive Labels." (2020). 简述 在联邦学习中,如果每个用户节点上只有一类数据,那么在本地训练时会将任何数据映射到对应标签,此时使用分布式SGD或FedAvg算法学习分类器会导致整体学习失效.为了安全性…
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learning of Deep Networks from Decentralized Data," in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Apr. 2017…
我们在博文<联邦学习:按病态独立同分布划分Non-IID样本>中学习了联邦学习开山论文[1]中按照病态独立同分布(Pathological Non-IID)划分样本. 在上一篇博文<联邦学习:按Dirichlet分布划分Non-IID样本>中我们也已经提到了按照Dirichlet分布划分联邦学习Non-IID数据集的一种算法.下面让我们来看按Dirichlet分布划分数据集的另外一种变种,即按混合分布划分Non-IID样本,该方法为论文[2]中首次提出. 该论文提出了一个重要的假设…
这是一个新开的每周六定期更新栏目,将本周arxiv上新出的联邦学习等感兴趣方向的文章进行总结.与之前精读文章不同,本栏目只会简要总结其研究内容.解决方法与效果.这篇作为栏目首发,可能不止本周内容(毕竟欠账太多了). 量化 A. T. Suresh, Z. Sun, J. H. Ro, and F. Yu, "Correlated quantization for distributed mean estimation and optimization," arXiv:2203.0492…
Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, there's a good chance it's divided into a unit on supervised learning and a unit on unsupervised learning. We certainly care about this distinction f…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), zip code可能演算出walkable(可休闲去处),富人比例和zip code也可能决定了学区质量,这些个可住家庭大小,可休闲性,学区质量实际上对于房价预测有着至关重要的影响,但是他们都无法直接从原始数据输入获取,而是进过hidden layer学习抽象得出的特征. loss functio…
课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computational biology.搜索引擎Google/Bing. 自动直升机autonomous helicopter.自然语言处理Natural Language Processing 2.ML的定义 3.目前ML的分类 监督学习Supervised Learning.无监督学习Unsupervised…
Active Learning主动学习 我们使用一些传统的监督学习方法做分类的时候,往往是训练样本规模越大,分类的效果就越好.但是在现实生活的很多场景中,标记样本的获取是比较困难的,这需要领域内的专家来进行人工标注,所花费的时间成本和经济成本都是很大的.而且,如果训练样本的规模过于庞大,训练的时间花费也会比较多.那么有没有办法,用尽可能少的标注,获取尽可能好的训练结果?主动学习(Active Learning)为我们提供了这种可能.主动学习通过一定的算法查询最有用的未标记样本,并交由专家进行标记…
近日,微众银行联邦学习FATE开源社区迎来了两位新贡献者——来自腾讯的刘洋及秦姝琦,作为云计算安全领域的专家,两位为FATE构造了新的功能点,并在Github上提交修复了相关漏洞.(Github项目地址:https://github.com/FederatedAI/FATE )从FATE的面世,到贡献者激励制度的推出,参与开源社区建设的数据安全行业从业者不断踊现,FATE在业内的关注度.价值认可度逐步提升,联邦学习生态正进一步深化及拓展. AI时代数据安全问题严峻,联邦学习是必经解决路径 人工智…
<Machine Learning - 李宏毅> 学习笔记 b站视频地址:李宏毅2019国语 第一章 机器学习介绍 Hand crafted rules Machine learning ≈ looking for a function from data Speech recognition Image recognition Playing go Dialogue system Framework define a set of function goodness of function…
Active Learning 主动学习 2015年09月30日 14:49:29 qrlhl 阅读数 21374 文章标签: 算法机器学习 更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qrlhl/article/details/48828589 最近读了一篇paper,题目是An MRF Model-Based Active Learning Fram…
数据孤岛.数据隐私以及数据安全,是目前人工智能和云计算在大规模产业化应用过程中绕不开的“三座大山”. “联邦学习”作为新一代的人工智能算法,能在数据不出本地的情况下,实现共同建模,提升AI模型的效果,从而保证数据隐私安全,突破数据孤岛和小数据的限制,这无疑成为了跨越“三座大山”的途径之一.因此,作为联邦学习全球首个工业级开源项目,FATE也受到了各方关注,开发者们对加入社区建设纷纷表示期待.(FATE开源社区地址:https://github.com/FederatedAI/FATE) 而在贡献…
腾讯 Angel PowerFL 联邦学习平台 联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融.医疗.城市安防等领域. 腾讯 Angel PowerFL 联邦学习平台构建在 Angel 机器学习平台上,利用 Angel-­PS 支持万亿级模型训练的能力,将很多在 Worker 上的计算提升到 PS(参数服务器) 端:Angel PowerFL 为联邦学习算法提供了计算.加密.存储.状态同步等基本操作接口,通过流程调度模块协调参与方任务执行状态,而通信模块完成了任务训…
内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程师 大家都知道,人工智能的发展离不开广泛的数据支撑.数据是基础,也是关键.但行业中小规模.碎片化,亦是大规模.高质量的数据都很难获取,涉及到工程.监管和隐私合规多方面的问题.这也就导致人工智能产业面临数据孤岛挑战,比如企业获得用户数据越来越难.企业内不同部门数据难合作.同行业企业数据难以共享.跨行业数据难以发…
我们在<Python中的随机采样和概率分布(二)>介绍了如何用Python现有的库对一个概率分布进行采样,其中的dirichlet分布大家一定不会感到陌生.该分布的概率密度函数为 \[P(\bm{x}; \bm{\alpha}) \propto \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1} \\ \bm{x}=(x_1,x_2,...,x_k),\quad x_i > 0 , \quad \sum_{i=1}^k x_i = 1\\ \bm{\alpha} =…
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits." (2022). 简介 传统FedAvg算法下,SGD的多轮本地训练会导致模型差异增大,从而使全局loss收敛缓慢.本文作者提出每次本地用户更新后,仅对部分网络参数进行聚合,从而降低模型…
第一部分 字典学习以及稀疏表示的概要 字典学习(Dictionary Learning)和稀疏表示(Sparse Representation)在学术界的正式称谓应该是稀疏字典学习(Sparse Dictionary Learning).该算法理论包含两个阶段:字典构建阶段(Dictionary Generate)和利用字典(稀疏的)表示样本阶段(Sparse coding with a precomputed dictionary).这两个阶段(如下图)的每个阶段都有许多不同算法可供选择,每种…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在<科学>以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类: 2…
http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在<科学>以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类: 2…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度学习面临的一个问题就是在网络训练的过程中存在梯度消失问题(vanishing gradient problem),或者更广义地来讲就是不稳定梯度问题.那么到底什么是梯度消失呢?这个问题又是如何导致的呢?这就是本文要分享的内容. 1. 消失的梯度 首先,我们将一个网络在初始化之后在训练初期的结果可视化如下: 在…
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(visual object tracking)的过程.目标跟踪(特指单目标跟踪)是指:给出目标在…
http://blog.csdn.net/pipisorry/article/details/48894963 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之Nearest-Neighbor Learning,KNN最近邻学习 {The module is about large scale machine learning.} Supervised Learning监督学习 Note: y有多种不同的形式,对应不同…
目录 什么是主动学习? 主动学习 vs. 被动学习 为什么需要主动学习? 主动学习与监督学习.弱监督学习.半监督学习.无监督学习之间的关系 主动学习的种类 主动学习的一个例子 主动学习工具包 ALiPy References 本文将简单介绍什么是主动学习(Active Learning,AL),为什么需要主动学习,主动学习和监督学习.弱监督学习.半监督学习.无监督学习之间是什么关系.最后再简单介绍主动学习的分类.(这里介绍的主动学习是机器学习的一个子领域.) 什么是主动学习? 主动学习(Acti…