题意:给定一张无向图,每条边都有一个通过的概率 ,如果无法通过,那么就要回到起点重新出发从起点到终点的时间固定为K,如果成功到达,又需要额外花费K的时间,问走S次的最小期望时间 思路:这道题分为两部分,第一部分是求spfa,第二部分是通过得出的最大的概率的那条路算出答案:怎么算呢,通过最短路求出后,设期望值为E,成功概率为p,如果成功,期望值为p*2k,如果不成功,期望值为(1-p)*(E+2k)因此E=p*2k+(1-p)*(E+2k),化简为E=2k/p最后再乘上s #include<cst…