线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x…
Linear Regreesion          在现实生活中普遍存在着变量之间的关系,有确定的和非确定的.确定关系指的是变量之间可以使用函数关系式表示,还有一种是属于非确定的(相关),比如人的身高和体重,一样的身高体重是不一样的.       线性回归:            1: 函数模型(Model):                              假设有训练数据                            那么为了方便我们写成矩阵的形式            …
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable  1. 代价函数Cost Function  在单变量线性回归中,已知有一个训练集有一些关于$x$.$y$的数据(如×所示),当我们的预测值$h(x)$…
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y)是一个训练样例, (x(i),y(i))是第 i个训练样例. 1.2 假设函数 使用某种学习算法对训练集的数据进行训练, 我们可以得到假设函数(Hypothesis Function), 如下图所示. 在房价的例子中,假设函数就是一个房价关于房子面积的函数.有了这个假设函数之后, 给定一个房子的面积…
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          …
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 II 2.5  梯度下降 2.6  梯度下降的直观理解 2.7  梯度下降的线性回归 2.8  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:…
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法(取自 百度百科). 例如:现在有一堆散乱的点,想找出一个一元一次方程来让这些点的分布误差最小(就是找出一条最合适的直线来贯穿这些点). 图中红色直线就是我们需要找的线.这条直线的表示为: y=ax+b.那么找出a.b这两个变量最合适的值就叫线性回归. 在图片中,蓝色的点用(xi,yi)来表示.m…
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
Linear Regression with One Variable Model Representation Recall that in *regression problems*, we are taking input variables and trying to map the output onto a *continuous* expected result function. Linear regression with one variable is also known…
从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的目的主要是对Ⅱ章中出现的一些算法进行实现,适合的人群为已经看完本章节Stanford课程的学者.本人只是一名初学者,尽可能以白话的方式来说明问题.不足之处,还请指正. 在开始讨论具体步骤之前,首先给出简要的思维路线: 1.拥有一个点集,为了得到一条最佳拟合的直线: 2.通过“最小二乘法”来衡量拟合程…
Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x表示输入变量或feature(特征),此处即房子面积:y是输出变量或目标变量,此处即房子价格.(x,y)是训练集中的一个样本,如图中加上右上角(i)表示训练集中第i个样本. 上图是机器学习的一个简单流程,我们通过对Training Set(训练集)使用Learning Algorithm 来训练出一…
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第6课时<模型概述>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下来以便日后查阅使用.现分享给大家.如有错误,欢迎大家批评指正,在此表示诚挚地感谢!同时希望对大家的学习能有所帮助. Our first learning algorithm will be linear regression. In this video (article), you'll see what…
machine learning- linear regression with one variable(2) Linear regression with one variable = univariate linear regression: 由一个输入变量预测出一个output (regression problem预测连续的值).                                  single input<--->single output training set:…
Introduction What is machine learning? Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measur…
1 线性回归算法 http://www.cnblogs.com/wangxin37/p/8297988.html 回归一词指的是,我们根据之前的数据预测出一个准确的输出值,对于这个例子就是价格,回归=预测,同时,还有另一种最常见的监督学习方式,叫做分类问题,当我们想要预测离散的输出值,例如,我们正在寻找癌症肿瘤,并想要确定肿瘤是良性的还是恶性的,这就是0/1离散输出的问题.更进一步来说,在监督学习中我们有一个数据集,这个数据集被称训练集. 我们将要用来描述这个回归问题的标记如下: mm代表训练集…
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格.在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数据集,如果你有一个朋友正想出售自己的房子,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱. 那么,你可以做的一件事就是构建一个模型,也许是条直线.从这个数据模型上来看,也许你可以告诉你的朋友,他大概…
一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(output variable/target variable). (x, y):一个训练样本 (x(i), y(i)):第i个训练样本 m:样本数目 2.机器学习的一般过程 如图,机器学习算法通过学习训练集得出假设函数h(Hypothesis),然后接受输入x,输出y.假设函数h称为模型. 3.线性回归…
2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量   x                 代表特征/输入变量 y                 代表目标变量/输出变量 (x,y)            代表训练集中的实例 (x(i),y(i)  )    代表第 i 个观察实例 h                代表学习算法的解决方案或…
面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 y代表输出变量 (x,y)代表训练集中的实例 h代表方案或者假设        h =  a x + b 输入变量输入给h  得到输出结果 因为只有一个特征   所以是单变量线性回归问题 a b就是代价参数    求ab就是建模    ab算完和实际的差距叫建模误差 寻找ab平方和最小点  就是代价…
Question 1 Consider the problem of predicting how well a student does in her second year of college/university, given how well she did in her first year. Specifically, let x be equal to the number of “A” grades (including A-. A and A+ grades) that a…
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如…
所谓的单变量线性回归问题就是监督学习的一部分. 通过构建数学模型给出一个相对准确的数值,也就是预测模型,通过将数据通过数学模型,衍生至回归问题 通过以下的几个例子,我们来研究单变量线性回归. 1.王阿姨由于刚来本地时间不久,对本地海鲜市场螃蟹的价格并不了解,所以王阿姨的儿子为王阿姨建立了单变量线性回归的数学模型 从这张图片来看,王阿姨所需要的螃蟹价格回归模型明显和准确的显示出当地价格的数学模型. 2.某学校为当地同学买球鞋,各地价格不一样,所以采用了线性回归的办法来估测同学们此次卖运动鞋所化的费…
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更新,希望大家多多批评指正. Supervised Learning(监督学习) 在监督学习中,我们的数据集包括了算法的输出结果,比如具体的类别(分类问题)或数值(回归问题),输入和输出存在某种对应关系. 监督学习大致可分为回归(classification)和分类(regression). 回归:对…
    最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]     最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归) [数据]     1.准备一个ex1data1.txt,第一列为年龄,第二列为价格     2.导入matla…
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归.多参数线性回归和 逻辑回归的总结版.旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍.     本讲内容: Matlab 实现各种回归函数 ========================= 基本模型 Y=θ0+θ1X1型---线性回归(直线拟合…
来源:https://www.cnblogs.com/jianxinzhou/p/4083921.html 1. The Problem of Overfitting (1) 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图.如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型.我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓.因此线性回归并没有很好拟合训练数据. 我们把此类情况称为欠拟合(underfit…
1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最能反映这些样本数据之间的规律呢? 为了解决这个问题,我们需要引入误差分析预测值与真实值之间的误差为最小. 2.梯度下降算法 梯度下降的场景: 梯度下降法的基本思想可以类比为一个下山的过程.假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷). 但此时山上的浓雾很…
我们从上一篇博客中知道了关于单变量线性回归的相关问题,例如:什么是回归,什么是代价函数,什么是梯度下降法. 本节我们讲一下多变量线性回归.依然拿房价来举例,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x0 ,x1 ,...,xn ). 增添更多特征后,我们引入一系列新的注释: 假设函数 h 表示为: 这个公式中有 n+1个参数和 n 个变量,为了使得公式能够简化一些,引入x0 = 1,则公 式转化为: 此时模型中的参数是一个 n+1维 的向量,…
%测试数据 'ex1data1.txt', 第一列为 population of City in 10,000s, 第二列为 Profit in $10,000s 1 6.1101,17.592 5.5277,9.1302 8.5186,13.662 7.0032,11.854 5.8598,6.8233 8.3829,11.886 7.4764,4.3483 6.4862,6.5987 5.0546,3.8166 5.7107,3.2522 14.164,15.505 5.734,3.1551…