import tensorflow as tf v = tf.Variable(0, dtype=tf.float32, name="v") ema = tf.train.ExponentialMovingAverage(0.99) print(ema.variables_to_restore()) saver = tf.train.Saver({"v/ExponentialMovingAverage": v}) with tf.Session() as sess:…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt image_raw_data = tf.gfile.FastGFile("F:\\TensorFlowGoogle\\201806-github\\datasets\\cat.jpg",'rb').read() with tf.Session() as sess: img_data = tf.image.decode_jpeg(image…
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层卷积层的尺寸和深度 CONV2_DEEP = 64 CONV2_SIZE = 5 # 全连接层的节点个数 FC…
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords") filename_queue = tf.train.string_input_producer(files, shuffle=False) # 读取文件. reader = tf.TFRecordReader() _,serialized_example = reader.read(filen…
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 定义函数转化变量类型. def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.…
import tensorflow as tf def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) num_shards = 2 instances_per_shard = 2 for i in range(num_shards): filename = ('E:\\temp\\data.tfrecords-%.5d-of-%.5d' % (i, num_…
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data #设置输入参数 batch_size = 128 test_size = 256 # 初始化权值与定义网络结构,建构一个3个卷积层和3个池化层,一个全连接层和一个输出层的卷积神经网络 # 首先定义初始化权重函数 def init_weights(shape): return tf.Variabl…
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): #构建权重: in_sizeXout_size大小的矩阵 weights = tf.Variable(tf.random_normal([in_size, out_size]))#生成随机数 #构建偏置: 1X…
# -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inceptio…