ALS矩阵分解 一个 的打分矩阵 A 可以用两个小矩阵和的乘积来近似,描述一个人的喜好经常是在一个抽象的低维空间上进行的,并不需要把其喜欢的事物一一列出.再抽象一些,把人们的喜好和电影的特征都投到这个低维空间,一个人的喜好映射到了一个低维向量,一个电影的特征变成了纬度相同的向量,那么这个人和这个电影的相似度就可以表述成这两个向量之间的内积.我们把打分理解成相似度,那么“打分矩阵A(m*n)”就可以由“用户喜好特征矩阵U(m*k)”和“产品特征矩阵V(n*k)”的乘积.矩阵分解过程中所用的优化方法…
一.论文<QuickScorer:a Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees>是为了解决LTR模型的预测问题,如果LTR中的LambdaMart在生成模型时产生的树数和叶结点过多,在对样本打分预测时会遍历每棵树,这样在线上使用时效率较慢,这篇文章主要就是利用了bitvector方法加速打分预测.代码我找了很久没找到开源的,后来无意中在Solr ltr中看到被改动过了的源码,不过这个…
1.基础 创建自己的预测算法非常简单:算法只不过是一个派生自AlgoBase具有estimate 方法的类.这是该方法调用的predict()方法.它接受内部用户ID,内部项ID,并返回估计评级r from surprise import AlgoBase from surprise import Dataset from surprise.model_selection import cross_validate class MyOwnAlgorithm(AlgoBase): def __in…