AI 朴素贝叶斯分类】的更多相关文章

1.条件概率 P(A|B)表示在事件B已经发生的条件下,事件A发生的概率.计算公式:P(A|B)=P(AB)/P(B). 2.相互独立事件 对于相互独立事件A和B,它们发生的概率互不影响,P(AB)=P(A)P(B). 3.贝叶斯定理 P(A|B)=P(A)P(B|A)/P(B) 4.朴素贝叶斯分类 朴素:特征之间相互独立:贝叶斯:基于贝叶斯定理. 假设数据集的每个样本都是包含n个特征的n维特征向量,并且都属于m种类别之一.那么对于待分类样本x=(x1, x2, ..., xn),朴素贝叶斯分类…
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes.TAN.BAN和GBN. 贝叶斯网络是一个带有概率凝视的有向无环图,图中的每个结点均表示一个随机变量,图中两结点 间若存在着一条弧,则表示这两结点相相应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的.网络中随意一个结点X 均有一个对应的条件概率表(Con…
贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:Naive Bayes.TAN.BAN和GBN. 贝叶斯网络是一个带有概率凝视的有向无环图,图中的每个结点均表示一个随机变量,图中两结点 间若存在着一条弧,则表示这两结点相相应的随机变量是概率相依的.反之则说明这两个随机变量是条件独立的.网络中随意一个结点X 均有一个对应的条件概率表(Conditio…
1.贝叶斯分类的基础--贝叶斯定理 已知某条件概率.怎样得到两个事件交换后的概率,也就是在已知P(A|B)的情况下怎样求得P(B|A). 这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率.其基本求解公式为: . 贝叶斯定理之所以实用,是由于我们在生活中常常遇到这样的情况:我们能够非常easy直接得出P(A|B),P(B|A)则非常难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路. 贝叶斯定理…
算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感.而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的. 一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣.最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于…
1.什么是分类 分类是一种重要的数据分析形式,它提取刻画重要数据类的模型.这种模型称为分类器,预测分类的(离散的,无序的)类标号.例如医生对病人进行诊断是一个典型的分类过程,医生不是一眼就看出病人得了哪种病,而是要根据病人的症状和化验单结果诊断病人得了哪种病,采用哪种治疗方案.再比如,零售业中的销售经理需要分析客户数据,以便帮助他猜测具有某些特征的客户会购买某种商品. 2.如何进行分类 数据分类是一个两阶段过程,包括学习阶段(构建分类模型)和分类阶段(使用模型预测给定数据的类标号) 3.贝叶斯分…
原文:http://segmentfault.com/a/1190000002472791 朴素贝叶斯(Naive Bayes Classifier)是一种「天真」的算法(假定所有特征发生概率是独立的),同时也是一种简单有效的常用分类算法.关于它的原理,参见朴素贝叶斯分类器的应用.scikit-learn是一个广泛应用的机器学习Python库,它封装了包括朴素贝叶斯在内的若干基础算法.在这篇博客里,我们希望用朴素贝叶斯实现对短文本(新闻标题)的分类.朴素贝叶斯属于有监督分类,需要获取一批已标注的…
1.概述 朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验 概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类.总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型:当各特征相关性较小时,朴素贝叶斯分类性能最为良好.另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算.本文详述了朴素贝叶斯分类的统…
SparkMLib分类算法之朴素贝叶斯分类 (一)朴素贝叶斯分类理解 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关.举个例子,如果一种水果具有红,圆,直径大概4英寸等特征,该水果可以被判定为是苹果.尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的.尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果.…
今年毕业时的毕设是有关大数据及机器学习的题目.因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法.虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但是这提升了自己对与js的理解以及弥补了一点点关于数据结构的弱点.对机器学习感兴趣的朋友还是去用 python,最终还是在学校的死板论文格式要求之外,记录一下实现的过程和我自己对于算法的理解.源码在github:https://github.com/abzerolee/ID3_Bayes_JS开始学习…