What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, tf.name_scope. Why: 在自己的编写代码过程中, 用如下代码进行变量生成并进行卷积操作: import tensorflow as tf import numpy as np def my_conv2d(data, name, kh, kw, sh, sw, n_out): n_in…
''' Created on Apr 21, 2017 @author: P0079482 ''' #如何通过tf.variable_scope函数来控制tf.ger_variable函数获取已经创建过的变量 #在名字为foo的命名空间内创建名字为v的变量 import tensorflow as tf with tf.variable_scope("foo"): v = tf.get_variable("v",shape=[1],initializer=tf.co…
1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') 以上代码定义了一个state变量, new_value = tf.add(state,1) 以上代码创建一个操作,使定义的变量加一,并将加一后的值赋给 new_value update = tf.assign(state,new_value) 赋值操作,将new_value 的值赋给state in…
2.Tensorflow中的变量注意:tf中使用 变量必须先初始化下面是一个使用变量的TF代码(含注释): # __author__ = "WSX" import tensorflow as tf # tf中使用 变量必须先初始化 x = tf.Variable([1,2]) a = tf.constant([3,3]) sub = tf.subtract(x,a) add = tf.add(x,sub) init = tf.global_variables_initializer()…
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:tf.get_variable创建与获取变量 tf.Variable自动检测命名冲突并且处理:tf.get_variable在没有设置reuse时会报错 tf.name_scope没有reuse功能,tf.get_variable在变量冲突时报错:tf.variable_scope有reuse功能,可…
三种命名方法 在程序语言中,通常使用的变量命名方法有三种:骆驼命名法(CamelCase),帕斯卡命名法(PascalCase)和匈牙利命名法. 依靠单词的大小写拼写复合词的做法,叫做"骆驼命名法"(CamelCase).比如,backColor这个复合词,color的第一个字母采用大写. 它之所以被叫做"骆驼命名法",是因为大小写的区分使得复合词呈现"块状"(bump),看上去就像骆驼的驼峰(hump). "骆驼命名法"又分…
1.tf.Variable([[1, 2]])  # 创建一个变量 参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据 2.tf.global_variables_initializer() 进行变量全局的初始化操作 参数说明:如果代码中存在变量,那么一定需要进行初始化操作 3.tf.matmul(w, x) # 进行数据的点乘操作 参数说明:w,x表示需要进行点乘的矩阵 4.sess = tf.Session() 执行操作的函数 参数说明:通常使用sess.run() 进行参数的执行…
从初识tf开始,变量这个名词就一直都很重要,因为深度模型往往所要获得的就是通过参数和函数对某一或某些具体事物的抽象表达.而那些未知的数据需要通过学习而获得,在学习的过程中它们不断变化着,最终收敛达到较好的表达能力,因此它们无疑是变量. 正如三位大牛所言:深度学习是一种多层表示学习方法,用简单的非线性模块构建而成,这些模块将上一层表示转化成更高层.更抽象的表示. 原文如下: Deep-learning methods are representation-learning methods with…
一 .tf.variable() 在模型中每次调用都会重建变量,使其存储相同变量而消耗内存,如: def repeat_value(): weight=tf.variable(tf.random_normal([5,5,6]),name='weight') return weight 如果多次调用函数如: result1=repeat_value() result2=repeat_value() # 重复调用 将会重复创建一份变量,却保存相同模型参数.若使用字典可以解决此类问题,却破坏模型封装性…
常量 constant tf.constant()函数定义: def constant(value, dtype=None, shape=None, name="Const", verify_shape=False) value: 符合tf中定义的数据类型的常数值或者常数列表; dtype:数据类型,可选; shape:常量的形状,可选; name:常量的名字,可选; verify_shape:常量的形状是否可以被更改,默认不可更改; constant()函数提供在tensorflow…