BZOJ4911: [Sdoi2017]切树游戏】的更多相关文章

BZOJ 4911 切树游戏 重构了三次.jpg 每次都把这个问题想简单了.jpg 果然我还是太菜了.jpg 这种题的题解可以一眼秒掉了,FWT+动态DP简直是裸的一批... 那么接下来,考虑如何维护信息. 每个点维护$4$个信息,分别表示,这条链自底向上,自上向底,两端都在这条链的轻儿子里,和两端为链头的方案数. 这样的话,正常询问就没啥问题了,只需要每次修改和初始化的时候FWT一下,然后最后FWT回来即可. 然后这样做的话,因为FWT没有可减性(没法求逆),所以每次需要将轻儿子用线段树维护一…
[BZOJ4911][SDOI2017]切树游戏(动态dp,FWT) 题面 BZOJ 洛谷 LOJ 题解 首先考虑如何暴力\(dp\),设\(f[i][S]\)表示当前以\(i\)节点为根节点,联通子树权值和为\(S\)的方案数,转移就是\(FWT\)的卷积,最后只需要把所有的\(f[i][k]\)全部加起来就可以得到最终的答案. 于是这样子的复杂度就是\(O(Qnmlogm)\).但实际上转移的时候不需要\(FWT\)回来,直接拿点值表示的数组做就可以了,这样子可以少一个\(log\). 那么…
题意 题目描述 小Q是一个热爱学习的人,他经常去维基百科学习计算机科学. 就在刚才,小Q认真地学习了一系列位运算符,其中按位异或的运算符\(\oplus\)对他影响很大.按位异或的运算符是双目运算符.按位异或具有交换律,即\(i \oplus j = j \oplus i\). 他发现,按位异或可以理解成被运算的数字的二进制位对应位如果相同,则结果的该位置为\(0\),否则为\(1\),例如:\(1(01) \oplus 2(10) = 3(11)\). 他还发现,按位异或可以理解成参与运算的数…
题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FWT的过程,进一步地可以注意到FWT在中途没有还原的必要.从FWT的过程中我们可以发现FWT具有可加性和交换律结合律. 这样原问题可以在静态的情况下通过树形DP做到$O(nm)$. 考虑动态的问题.根据<神奇的子图>命题报告及其拓展中描述的算法五,我们应该不难想到基于树链剖分的这样的做法. 首先对树…
考虑维护原树的lct,在上面dp,由于dp方程特殊,均为异或卷积或加法,计算中可以只使用fwt后的序列 v[w]表示联通子树的最浅点为w,且不选w的splay子树中的点 l[w]表示联通子树的最浅点在w的lct子树中,且选w的splay子树中极左点(w的splay子树为{w}+{u的splay子树,满足u==ch[w][0]||u==ch[w][1]}) r[w]表示联通子树的最浅点在w的lct子树中,且选w的splay子树中极右点 lr[w]表示联通子树的最浅点为w,且选w的splay子树中所…
题目 二轮毒瘤题啊 辣鸡洛谷竟然有卡树剖的数据 还是\(loj\)可爱 首先这道题没有带修,设\(dp_{i,j}\)表示以\(i\)为最高点的连通块有多少个异或和为\(j\),\(g_{i,j}=\sum_{k\in Tree(i)}dp_{k,j}\) (\(k\in Tree(i)\)表示\(k\)在\(i\)子树内部) 我们可以直接把每一个权值\(fwt\)一下,大力合并就好了,合并直接对位相乘,只需要在最后\(fwt\)回来就好了 但是我们有了修改,就变成了一道非常恶心的\(ddp\)…
洛谷题面传送门 SDOI 2017 R2 D1 T3,nb tea %%% 讲个笑话,最近我在学动态 dp,wjz 在学 FWT,而我们刚好在同一天做到了这道题,而这道题刚好又是 FWT+动态 dp 首先考虑怎样暴力计算答案,我们记 \(dp_{u,j}\) 表示以 \(u\) 为根的子树中有多少个连通块包含 \(u\) 且权值的异或和为 \(j\),初始 \(dp_{u,val_u}=1\),每次遍历 \(u\) 的一个子树 \(v\) 就对这个子树就对这两个子树的 \(dp\) 做一个合并,…
题解 把所有的数组一开始就FWT好然后再IFWT回去可以减小常数 从13s跑到0.7s-- 可以参照immortalCO的论文,感受一下毒瘤的动态动态DP 就是用数据结构维护线性递推的矩阵的乘积 由于所有轻儿子\(F(z) + z^{0}\)的乘积做除法太麻烦,我们用一个线段树维护每个点所有的轻儿子即可 代码 #include <bits/stdc++.h> #define enter putchar('\n') #define space putchar(' ') #define fi fi…
还是loj的机子快啊... 普通的DP不难想到,设F[i][zt]为带上根玩出zt的方案数,G[i][zt]为子树中的方案数,后面是可以用FWT优化的 主要是复习了下动态DP #include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; co…
LOJ 思路 显然是要DP的.设\(dp_{u,i}\)表示\(u\)子树内一个包含\(u\)的连通块异或出\(i\)的方案数,发现转移可以用FWT优化,写成生成函数就是这样的: \[ dp_{u}=x^{val_u}\prod (dp_v+1) \] 最后答案是所有DP值的和,于是获得了朴素的\(O(nmQ)\)的做法.(中间运算全部用点值表示) 显然是要用动态DP优化的,我们另外记一个\(S_u\)表示子树的DP值和自己的DP值的和,写成矩阵的形式,就是 \[ \left[\begin{ma…
考虑暴力的dp,即用$f_{i,j}$表示以$i$为根的子树内,强制$i$必须选且异或为$j$的方案数,转移用FWT即可,求出该dp数组的时间复杂度为$o(nm\log_{2}m)$ 由于是全局的方案数,再记录一个$sum_{i,j}=f_{i,j}+\sum_{son}sum_{son,j}$,那么即求$sum_{1,x}$ 令$f'_{i}=FWT(f_{i})$,则有$f'_{i,j}=a_{i,j}\prod_{son}(f'_{son,j}+1)$(其中$a_{i,j}$指点$i$初始…
切水果游戏曾经是一款风靡手机的休闲游戏,今天要介绍的就是一款网页版的切水果游戏, 由JavaSript和HTML5实现,虽然功能和原版的相差太大,但是基本的功能还是具备了,还是模仿的挺逼真,有一定的JavaSript水平的朋友,可以看看源代码,相信你的JavaSript水平会有很大的提升. /**  * this file was compiled by jsbuild 0.9.6  * @date Fri, 20 Jul 2012 16:21:18 UTC  * @author dron  *…
「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set维护一下虚儿子 但是啊,我发现搞这个区间改颜色的时候,虚儿子好像得用树套树维护,我当场就不行了... 每个点如果维护到根的颜色段数\(f\) 然后发现啊,这个你如果用一个lct的一个子树维护同一种颜色,在你access的时候实变虚或者虚变实对子树有一个+1或者-1 然后额外在外面开一个线段树维护子树…
不算学会lct...... 原题: Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进行这几种操作: 1 x: 把点x到根节点的路径上所有的点染上一种没有用过的新颜色. 2 x y: 求x到y的路径的权值. 3 x y: 在以x为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值. Bob一共会进行m次操作 1<=n,m<=100000  …
本来只是想练练LCT,没想到是个线段树 对于操作1:诶新的颜色?这不是access吗? 也就是说,我们用一棵splay来表示一种颜色 操作2直接在LCT上乱搞-- 不对啊,操作3要查子树 诶好像是静态的 那可以考虑线段树维护dfs序 现在要考虑怎么维护权值 我们发现开始的时候权值就是节点的深度 而在且只在access的时候会改变权值 试试魔改access? 原来: for (int y=0;x;y=x,x=fa[x]) { splay(x); ch[x][1]=y; update(x); } 那…
树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进行这几种操作: 1 x: 把点x到根节点的路径上所有的点染上一种没有用过的新颜色. 2 x y: 求x到y的路径的权值. 3 x: 在以x为根的子…
题面 传送门 思路 $LCT$ 我们发现,这个1操作,好像非常像$LCT$里面的$Access$啊~ 那么我们尝试把$Access$操作魔改成本题中的涂色 我们令$LCT$中的每一个$splay$链代表同一种颜色的一条链,那么$Access(u)$就相当于把这一段变成同一种颜色 注意这个东西能成立,是因为每次涂上的都是新的一种颜色(所以如果有$m$种颜色,每次涂其中一种,可能重复的之类的就不能这么做了) 线段树 接下来我们解决询问的问题:什么结构能维护链上信息和子树信息(同时)?当然是线段树了~…
描述 给定一个十进制正整数n(0 < n < 1000000000),每个数位上数字均不为0.n的位数为m. 现在从m位中删除k位(0<k < m),求生成的新整数最小为多少? 例如: n = 9128456, k = 2, 则生成的新整数最小为12456 输入 第一行t, 表示有t组数据: 接下来t行,每一行表示一组测试数据,每组测试数据包含两个数字n, k. 输出 t行,每行一个数字,表示从n中删除k位后得到的最小整数. 样例输入 2 9128456 2 1444 3 样例输出…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况. 用 H 表示正面朝上, 用 T 表示反面朝上,扔很多次硬币后,会得到一个硬币序列.比如 HTT 表示第一次正面朝上,后两次反面朝上…
题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正反面情况. 用 $ \texttt{H} $ 表示正面朝上, 用 $ \texttt{T} $ 表示反面朝上,扔很多次硬币后,会得到一个硬币序列.比如 $ \texttt{HTT} $ 表示第一次正面朝上,后两次反面朝上. 但扔到什么时候停止…
LOJ 2004 100pts 首先我们肯定要建AC自动机的.. 那么这题就肯定是个AC自动机上\(dp\). 所以想想状态. 首先如果我们把状态设成这样行不行: \(dp(i)\)表示匹配到了i节点的概率. 那么转移的时候就是\(dp(i)=\frac{1}{2}\sum dp(go_i^c)\). 这样的转移是有环的...所以高斯消元... 但是!AC自动机的节点数是\(O(n^2)\)的... 所以T得飞起.. 那么试着改一改? 改为\(dp(i)\)直接表示第i个串第一次出现的概率? 那…
Description Solution 设当前走出了一个不匹配任何字符串的串\(S\). ​ 若在\(S\)后随机增添\(m\)个字符,单看这些字符而言,这\(m\)个字符匹配到每个玩家的字符串的概率是相同的,记为\(P\). 问题在于,对于每个字符串来说,并不是所有情况下一定要通过新增添\(m\)个字符才能匹配到自己,有可能加到中途时,就已经与\(S\)的某个后缀组成了自己,又或者是与\(S\)的某个后缀组成了别的字符串,早该停止了. 但是,对于每个串,不管每种情况中途该不该停下,我们计算出…
there #include <iostream> #include <cstdio> using namespace std; int n, m, dfn[100005], idx, hea[100005], cnt, uu, vv, siz[100005], fa[100005][19]; int dep[100005], val[400005], dui[100005], opt, ch[100005][2], tag[400005]; int af[100005]; str…
题目链接 问题分析 首先一个显然的做法就是建出AC自动机,然后高斯消元.但是这样的复杂度是\(O(n^3m^3)\)的. 我们发现其实只需要求AC自动机上\(n\)个状态的概率,而其余的概率是没有用的.我们不妨设\(i\)赢的概率是\(P_i\).同时,我们令\(P_0\)为没有任何一个人赢的概率. 然后我们考虑从\(P_0\)转移到\(P_i\).如果我们直接在\(P_0\)后面加上串\(i\)是可以的.这样的概率是\(\frac{1}{2^m}P_0\). 但是这样有一个问题: 我们从\(P…
动态dp初探 动态区间最大子段和问题 给出长度为\(n\)的序列和\(m\)次操作,每次修改一个元素的值或查询区间的最大字段和(SP1714 GSS3). 设\(f[i]\)为以下标\(i\)结尾的最大子段和,\(g[i]\)表示从起始位置到\(i\)以内的最大子段和. \[ f[i]=\max(f[i-1]+a[i],a[i])\\g[i]=\max(g[i-1],f[i]) \] 定义如下的矩阵乘法,显然这满足乘法结合律和分配律. \[ C=AB\\C[i,j]=\max_{k}(A[i,k…
[复习]动态dp 你还是可以认为我原来写的动态dp就是在扯蛋. [Luogu4719][模板]动态dp 首先作为一个\(dp\)题,我们显然可以每次修改之后都进行暴力\(dp\),设\(f[i][0/1]\)表示当前考虑\(i\)及其子树内的点,当前这个点是选还是不选时能够得到的最大权值,那么我们可以得到转移:\(f[i][0]+=\max\{f[v][0],f[v][1]\},f[i][1]+=f[v][0]\),其中\(v\)是\(i\)的一个儿子. 那么这样子的复杂度就是\(O(qn)\)…
退役前的记录 诸位好,我是\(CJ\)最菜的\(Oier\),已经是\(G2\)的老年选手了,不知道什么时候就会退役了,总之\(G1\ double\)的机会已经没有了,去年因为联赛失利而止步,而今年虽然有了很大的进步,但留给我犯错的机会却没有了,联赛,\(WC\),省选,\(SC\),\(NOI\),我不知道我能坚持到什么时候,只要有一点失误,就真的要退役了.在这新的赛季,我不知道我什么时候就会永远的离开\(OI\),只是想记下这\(OI\)生涯最后的时光,在退役之后也能留下奋斗过的痕迹,能让…
租酥雨的NOIP2018赛前日记 离\(\mbox{NOIP2018}\)只剩下不到一个月的时间辣! 想想自己再过一个月就要退役了,觉得有必要把这段时间的一些计划与安排记录下来. 就从国庆收假开始吧. 2018.10.07 下午跟\(\mbox{yyb}\)一起做晚上好题分享的课件.\(\mbox{yyb}\)个毒瘤塞了\(5\)道\(\mbox{Atcoder}\)被阉割成\(3\)道,然后\(\mbox{fdf}\)塞了道\(\mbox{SDOI2017}\)切树游戏,\(\mbox{ppl…
标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 \(f_{i,0/1}\) 分别表示不选(\(0\))/ 选(\(1\))点 \(i\) 的最大权值,那么有 \(f_{i,0}=\sum_{x\in S_i}\max(f_{x,0},f_{x,1}),f_{i,1}=v_i+\sum_{x\in S_i}f_{i,0}\). 如果加上修改操作,那…
这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\) 面,每一面的概率均等,取值为 \([0, X)\) ,问最后取值在 \([a, b]\) 之间的概率. 一个浮点数,绝对误差不超过 \(0.013579\) 为正确. 数据范围 每组数据有 \(10\) 次询问. \(100\%\) 的数据,\(T \leq 10\),\(2 \leq X \l…