基本折线图 Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现. 举个例子 import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18', periods=10), columns=list('ABCD')) df.p…
pandas的拼接操作 #重点 pandas的拼接分为两种: 级联:pd.concat, pd.append 合并:pd.merge, pd.join 0. 回顾numpy的级联 import numpy as np import pandas as pd from pandas import Series,DataFrame ============================================ 练习12: 生成2个3*3的矩阵,对其分别进行两个维度上的级联 ========…
Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理E…
一.读取文件 1)读取文件内容 import pandas info = pandas.read_csv('1.csv',encoding='gbk') # 获取文件信息 print(info) print(type(info)) # 查看文件类型 print(info.dtypes) # 查看每列文件的类型 print(help(pandas.read_csv)) 2)获取文件的信息 import pandas info = pandas.read_csv('1.csv',encoding='…
本文转载自:https://www.makcyun.top/web_scraping_withpython2.html 需要学习的地方: (1)read_html的用法 作用:快速获取在html中页面中table格式的数据 (2)to_sql的用法 将获得的DataFrame数据写入数据表中 (3)使用urlencode构造所需的url参数 摘要: 我们平常在浏览网页中会遇到一些表格型的数据信息,除了表格本身体现的内容以外,你可能想透过表格再更进一步地进行汇总.筛选.处理分析等操作从而得到更多有…
一.简介 HDF5(Hierarchical Data Formal)是用于存储大规模数值数据的较为理想的存储格式,文件后缀名为h5,存储读取速度非常快,且可在文件内部按照明确的层次存储数据,同一个HDF5可以看做一个高度整合的文件夹,其内部可存放不同类型的数据.在Python中操纵HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h5py模块来完成从Python原生数据结构向HDF5格式的保存,本…
Pandas的基础操作(一)——矩阵表的创建及其属性 (注:记得在文件开头导入import numpy as np以及import pandas as pd) import pandas as pd import numpy as np #创建一个Pandas序列 s = pd.Series([1, 3, 6, np.nan, 44, 1]) # print(s) # 0 1.0 # 1 3.0 # 2 6.0 # 3 NaN # 4 44.0 # 5 1.0 # dtype: float64…
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p…
pandas的apply操作类似于Scala的udf一样方便,假设存在如下dataframe: id_part pred pred_class v_id 0 d [0.722817, 0.650064] cat,dog d1 1 5 [0.119208, 0.215449] other_label,other_label d2 需要把 v_id=d1 中,pred 与 pred_class 一一对应,需要将 pred 大于0.5的pred_class取出来作为新的一列,如果小于0.5则不取出来:…
利用 pandas库读取excel表格数据 初入IT行业,愿与大家一起学习,共同进步,有问题请指出!! 还在为数据读取而头疼呢,请看下方简洁介绍: 数据来源为国家统计局网站下载: 具体方法 代码: import pandas as pd​df = pd.read_excel('quanguojingji10nian.xls')#现在Excel表格与py代码放在一个文件夹里​x=df['指标']#读取第一列数据print(x);#把'指标换成其他列地列名,就能读其他列' 结果: 读出x列的结果可以…