二值法方法综述及matlab程序】的更多相关文章

在某些图像处理当中一个关键步是二值法,二值化一方面能够去除冗余信息,另一方面也会使有效信息丢失.所以有效的二值化算法是后续的处理的基础.比如对于想要最大限度的保留下面图的中文字,以便后续的定位处理. 二值化算法包括全局二值化和局部二值化, 全局二值化具有速度快但效果相对差的特点, 局部二值化算法具有速度慢效果好的特点. 原图 全局阈值              方法一:直接采用im2bw ;手动阈值 方法二:迭代法求阈值 迭代式阈值选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似…
Kittler二值化方法,是一种经典的基于直方图的二值化方法.由J. Kittler在1986年发表的论文“Minimum Error Thresholding”提出.论文是对贝叶斯最小错误阈值的准则做了改进,使得计算更加的简单和有效. Divijver 和 Kittler的贝叶斯最小错误准则为: 因为需要求解二次方程和对正态分布的均值和方差进行估计,Nagawa 和 Rosenfeld提出了求解和估计的方法(Some Experiments on Variable Thresholding).…
一,分块处理超大图像的二值化问题   (1) 全局阈值处理  (2) 局部阈值 二,空白区域过滤 三,先缩放进行二值化,然后还原大小 np.mean() 返回数组元素的平均值 np.std() 返回数组元素的标准差 一,分块处理超大图像的二值化问题  (1) 全局阈值处理   (2) 局部阈值 1 import cv2 as cv 2 import numpy as np 3 4 """ 5 def big_image_binary(image): 6 print(image…
*分块 *全局阈值 VS 局部阈值 import cv2 as cv import numpy as np def big_image_binary(image): print(image.shape) cw = 213 ch = 547 h,w = image.shape[:2] gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) for row in range(0,h,ch): for col in range(0,w,cw): roi = gray[r…
之前接触过全局二值化(OTSU算法),还有OPENCV提供的自适应二值化,最近又了解到一种新的局部二值化算法,Sauvola算法. 转载自:http://www.dididongdong.com/archives/4048 值得注意的是,计算r×r邻域内像素值的时候,一种优化的策略是,使用OPENCV提供的积分图,计算整张图像的积分图,那么计算r×r区域内的均值可以在常数时间内实现. CV_EXPORTS_W ); 我们常见的图像二值化算法大致可分为全局阈值方法与局部阈值方法这两种类型.其中OT…
查看OpenCV文档cvThreshold(),在二值化函数cvThreshold(const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type)中,参数threshold_type有5种类型: THRESH_BINARY THRESH_BINARY_INV THRESH_TRUNC THRESH_TOZERO THRESH_TOZERO_INV 问题来了:为什么可以在threshold_…
图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. python代码层面知识点: opencv中图像二值化方法: OTSU Triangle 自动和手动 自适应阈值 import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray =…
atitit.验证码识别step4--------图形二值化 灰度化 1. 常见二值化的方法原理总结 1 1.1. 方法一:该方法非常简单,对RGB彩色图像灰度化以后,扫描图像的每个像素值,值小于127的将像素值设为0(黑色),值大于等于127的像素值设为255(白色). 1 1.2. 方法二:最常见的二值处理方法是计算像素的平均值K, 2 1.3. 方法三:使用直方图方法来寻找二值化阈值, 2 1.4. 方法四:使用近似一维Means方法寻找二值化阈值,(推荐) 3 2. 使用类库imagei…
较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适应地变小.不同亮度.对比度.纹理的局部图像区域将会拥有相对应的局部二值化阈值.常用的局部自适应阈值有:1)局部邻域块的均值:2)局部邻域块的高斯加权和. /**…
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 全局固定阈值很容易理解,就是对整幅图像都是用一个统一的阈值来进行二值化: 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来…