tarjan的算法精髓就是dfn[]和low[]数组 dfn[i]表示在该节点被搜索的次序(时间戳) low[i]表示i或i的子树可以追溯到的最早的栈中节点 判断有强连通分量的条件就是 dfn[i]==low[i] 此时就可以判断i或i的子树是一个强联通分量 那么tarjan的算法过程是什么呢? 大致如下:从某一个节点开始,如果该节点还未入栈,那么它的dfn[i]=i;low[i]=i; 如果已经入栈了,那么它的low[i]就是当前该节点入栈时dfn[i]的值,而不是现在i的值. 如果想要更加准…
SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7406   Accepted: 3363 Description Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a…
1.简介tarjan是一种使用深度优先遍历(DFS)来寻找有向图强连通分量的一种算法. 2.知识准备栈.有向图.强连通分量.DFS. 3.快速理解tarjan算法的运行机制提到DFS,能想到的是通过栈来储存沿途的点,可以找到所有的环.环本身就是联通的,所以环对于强连通分量来说环已经很接近最终答案了.要把找环变成找强连通管分量还要考虑:a.在环外是不是有其他环在这个强连通分量内(极大性) (会被认为是2个环) b.一些不能构成环的点无法被考虑到,而他们本身就是强连通分量 (2不被认为是一个强连通分…
理解要点如下 理解LOW[i]数组的迭代过程.. low[u]=min(dfn[v],dfn[u],low[v]); 理解这个..如果有环..那么后代就可以更新祖先 那么low[v]就有用了.. 那么第二个理解是这个函数是一个递归函数所以有一个栈 而我们这个算法存顶点本身还存了一个栈.. 你要区分这两个栈..不要搞混了...…
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5400    Accepted Submission(s): 2411 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间…
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被称为"点双连通分量",记为"\(v-DCC\)".无向图图的极大边双连通子图被称为"边双连通分量",记为"\(e-DCC\)". 没错,万能的图论连通性算法\(Tarjan\)又来了. 预备知识 时间戳 图在深度优先遍历的过程中,…
cojs 908. 校园网 ★★   输入文件:schlnet.in   输出文件:schlnet.out   简单对比时间限制:1 s   内存限制:128 MB USACO/schlnet(译 by Felicia Crazy) 描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意如果 B 在 A 学校的分发列表中,那么 A 不必也在 B 学校的列表中. 你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受…
本文转自:www.cnblogs.com/collectionne/p/6847240.html 供大家学习 前言:之前翻译过一篇英文的关于割点的文章(英文原文.翻译),但是自己还有一些不明白的地方,这里就再次整理了一下.有兴趣可以点我给的两个链接. 割点的概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articulation point). 例如,在下图中,0.3是割点,因为将0和3中任意一个去掉之后,图就不再连通…
本文可转载,转载请注明出处:www.cnblogs.com/collectionne/p/6847240.html .本文未完,如果不在博客园(cnblogs)发现此文章,请访问以上链接查看最新文章. 前言:之前翻译过一篇英文的关于割点的文章(英文原文.翻译),但是自己还有一些不明白的地方,这里就再次整理了一下.有兴趣可以点我给的两个链接. 割点的概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articulation…
由于对于这一块掌握的十分不好,所以在昨天做题的过程中一直困扰着我,好不容易搞懂了,写个小总结吧 qwq~ 割点 概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点 . 比如我们现在有一个图: 如果我们将 4 号节点及它的所有边全部删去,那么这个图就变得不再联通,所以 4 号点是一个割点: 同理,5 号节点也是一个割点: 怎么求割点 我们可以用 Tarjan 算法去求割点: 有两个关键的数组: dfn [ i ] :表示编号为 i 的点在 dfs 过…