海明距离hamming distance】的更多相关文章

[本文链接] http://www.cnblogs.com/hellogiser/p/hamming-distance.html [介绍] 在信息领域,两个长度相等的字符串的海明距离是在相同位置上不同的字符的个数,也就是将一个字符串替换成另一个字符串需要的替换的次数. 例如: xxxxyy和xxxxzz的海明距离是2: 111100 和 111111 的海明距离是2: 对于二进制数字来说,海明距离的结果相当于a^b结果中1的个数. [字符串]  C++ Code  123456789101112…
仔细阅读ORB的代码,发现有很多细节不是很明白,其中就有用暴力方式测试Keypoints的距离,用的是HammingLUT,上网查了才知道,hamming距离是相差位数.这样就好理解了. 我理解的HammingLUT lut; result=lut((a),(b),size_t size):result=a与b的hamming distance+size; unsigned int hamdist(unsigned int x, unsigned int y) { unsigned int di…
[抄题]: The Hamming distance between two integers is the number of positions at which the corresponding bits are different. Now your job is to find the total Hamming distance between all pairs of the given numbers. Example: Input: 4, 14, 2 Output: 6 Ex…
[抄题]: The Hamming distance between two integers is the number of positions at which the corresponding bits are different. Given two integers x and y, calculate the Hamming distance. Note:0 ≤ x, y < 231. Example: Input: x = 1, y = 4 Output: 2 Explanat…
通过 采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析.分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹角算法.欧式距离.Jaccard相似度.最长公共子串.编辑距离等.这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量千万级的数据进行高效的合并去重.最简单的做法是拿着待比较的文本和数据库中所有的文本比较一遍如果是重复的数据就标示为重复.看起来很简单,我们来做个测试,就拿最简单的…
一.问题描述 B1[1 2 3 4 5 6 7 8 9] B2[12 13 14 21 31 41 51  1 1 81 1 1] 两个十进制矩阵,行数不一样,分别是n1和n2,列数必须一致,为nwords,输出的矩阵Dh是[n1,n2],这和求两句真的欧氏距离一样的. 输出[1 1] = 1和12海明+2和13海明 + 3和14海明,[1 2] = 1和21 + 2和31 + 3和41,也就是说[i j]是B1第i行和B2第j行的海明距离. 二.问题分析 1和12 21 51 81分别求海明距…
在前一篇文章 <海量数据相似度计算之simhash和海明距离> 介绍了simhash的原理,大家应该感觉到了算法的魅力.但是随着业务的增长 simhash的数据也会暴增,如果一天100w,10天就1000w了.我们如果插入一条数据就要去比较1000w次的simhash,计算量还是蛮大,普通PC 比较1000w次海明距离需要 300ms ,和5000w数据比较需要1.8 s.看起来相似度计算不是很慢,还在秒级别.给大家算一笔账就知道了: 随着业务增长需要一个小时处理100w次,一个小时为3600…
The Hamming distance between two integers is the number of positions at which the corresponding bits are different. Now your job is to find the total Hamming distance between all pairs of the given numbers. Example: Input: 4, 14, 2 Output: 6 Explanat…
http://acm.hdu.edu.cn/showproblem.php?pid=4712 Hamming Distance Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 1610    Accepted Submission(s): 630 Problem Description (From wikipedia) For bina…
算法简介 SimHash也即相似hash,是一类特殊的信息指纹,常用来比较文章的相似度,与传统hash相比,传统hash只负责将原始内容尽量随机的映射为一个特征值,并保证相同的内容一定具有相同的特征值.而且如果两个hash值是相等的,则说明原始数据在一定概率下也是相等的.但通过传统hash来判断文章的内容是否相似是非常困难的,原因在于传统hash只唯一标明了其特殊性,并不能作为相似度比较的依据. SimHash最初是由Google使用,其值不但提供了原始值是否相等这一信息,还能通过该值计算出内容…