HDU 3944 DP? (Lucas定理)】的更多相关文章

DP? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)Total Submission(s): 3126    Accepted Submission(s): 978 Problem Description Input Input to the problem will consists of series of up to 100000 data sets. For e…
题意:在杨辉三角中让你从最上面到 第 n 行,第 m 列所经过的元素之和最小,只能斜向下或者直向下走. 析:很容易知道,如果 m 在n的左半部分,那么就先从 (n, m)向左,再直着向上,如果是在右半部分,那么就是先向左斜着走再向上.这样对应到, 然后化简得到的答案就是C(n+1, m) + n - m,和C(n+1, m+1) + m.然后用Lucsa 定理就好. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000"…
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很大,只能输出模P以后的值 输入 输入文件的第一行包含两个整数 n和p,含义如上所述. 输出 输出文件中仅包含一个整数,表示计算1,2,⋯, n的排列中, Mogic排列的个数模 p的值. 样例输入 20 23 样例输出 16 题解 dp+Lucas定理 题目显然小根堆,考虑怎么求以一个节点为根的方案数.根肯定…
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i]>P[i/2]. 保证p为质数,输出答案 mod p的值.(n <= 10^6, p <= 10^9) 题解: 对于每个i,分别向i*2和i*2+1连一条边. 可以发现,最终形成的是一棵以1为根节点的二叉树. 题目中P[i]>P[i/2]的条件,就变成了:P[fa]<P[son…
题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案对1e9+7取模 显然膜2余1是个非常特殊的性质,应当好好加以利用 和组合数取模有关的东西,有Lucas定理,因此我们来试着推一推 $C_n^m%2=C_{n%2}^{m%2}\ast C_{n/2}^{m/2}$ 这个玩意的意义,显然就是把n和m转成二进制,那么只要没有某一位上n是0m是1(此时$…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i]为i个数的方案,设l为左子树大小r为右子树大小,则有: f[i]=C(i-1,l)*f[l]*f[r] 因为是个堆,所以子树大小都是确定的,可以直接递推得到. 其中C(n,m) nm比较大,可以用lucas定理求. 模型建立的重要性可知一二... [代码] #include<cstdio> #i…
DP? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)Total Submission(s): 1804    Accepted Submission(s): 595 Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…a…
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. 输入 第一行,四个整数N.M.T.P. 接下来的T行,每行两个整数,表示施工的路口的坐标. 输出 一…
http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b 重复这样的操作m次,每次都是从上次求出的序列a得到一个新序列b 给定初始的序列,求重复m次操作后得到的序列 [方法一] 假定n=5,我们模拟一次可以发现,经过m次操作后a1在b1......bn中出现的次数为: m=0: 1 0 0 0 0 m=2: 1 2 3 4 5 m=3: 1 3 6 10…