1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \frac{a}{gcd}, \frac{b}{gcd}\),然后\(\mu\)代入,就是 \[ \sum_{d=1}^{\sqrt{n}}\mu(d) \sum_i \sum_j \sum_k [ijk \le \frac{n}{d^2}] \] 问题就是怎么求后面的式子了 一开始我是 \[ f(n) = \s…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. 输出 输出一个整数,为…
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. \[N,K,L,H \leq 10^9,H-L \leq 10^5\] 分析 \(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了…
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \] \[ \sum_{p=1}^{n}\sum_{q=1}^{n}[gcd(p,q)==1]\sum_{p|i}\sum_{q|j}\frac{pj}{q} \] \[…
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d=1}^{n}[gcd(i,j)==d]d \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d] \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{\left…
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Solution\) 首先 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=d]\] 注意不是\(\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^n\sum…
正题 题目链接:https://ac.nowcoder.com/acm/contest/11174/F 题目大意 给出\(n,k\)求 \[\sum_{i_1=1}^n\sum_{i_2=1}^n...\sum_{i_k=1}^ngcd(f_{i_1},f_{i_2},...,f_{i_{k}}) \] 对\(10^9+9\)取模 其中\(f_i\)表示斐波那契数列的第\(i\)项 \(1\leq n,k\leq 10^8\) 解题思路 看上去就很莫比乌斯反演,首先把\(f\)提出来然后直接上莫…
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N",其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2…
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌斯反演,详见这篇博客:初学莫比乌斯反演. 推式子 下面让我们来推式子. 首先,我们采用解决这种问题的常用套路,来枚举\(gcd\),就能得到这样一个式子: \[\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\fra…