//用到了Havel-Hakimi定理,判断是否能够构图 //两种情况不能构图,1:对剩下序列排序后,最大的度数超过了剩下的顶点数 // 2:对最大的度数后面的f个度数减-后,出现了负数 //记录到临街矩阵只需要每次排序后减-记录. #include<stdio.h> #include<string.h> #include<stdlib.h> #define N 20 struct node { int u,index; } a[N]; int ma[N][N]; in…
题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这个序列. 令\(S=(d_1,d_2,\dots,d_n)\)为有限多个非负整数组成的非递增序列. S可简单图化当且仅当有穷序列\(S'=(d_2-1,d_3-1,...,d(d_1+1)-1,d(d_1+2),...,d_n)\)只含有非负整数且是可简单图化的. 最后判断一下是否都是零就好了 感觉…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 4137   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> #include <algorithm> using namespace std; struct Node{ int num,ids; }p[16]; int ans[16][16]; int n; int cmp(Node a,Node b){ return a.num>b.num; }…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
判断所给的图是不是生成树,如果有环就不是,如果没环但连通分量大于1也不是 find函数 用递归写的话 会无限栈溢出 Orz要加上那一串 手动扩栈 Sample Input6 8 5 3 5 2 6 45 6 0 0 8 1 7 3 6 2 8 9 7 57 4 7 8 7 6 0 0 3 8 6 8 6 45 3 5 6 5 2 0 0 -1 -1 Sample OutputYesYesNo # include <iostream> # include <cstdio> # inc…
未名湖附近共有N个大小湖泊L1, L2, -, Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, -, xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,-, xn(0 ≤ xi ≤ N). Output 对输入的每组测试…
poj 1659 Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0…
关于题意和Havel-Hakimi定理,可以看看http://blog.csdn.net/wangjian8006/article/details/7974845 讲得挺好的. 我就直接粘过来了 [ 题目大意:给出一个非负整数的序列,问这个序列是否是可图序列,而是否可图根据 Havel-Hakimi定理的方法来构图 解题思路:Havel-Hakimi定理: 1,一个非负整数组成的有限序列如果是某个无向图的序列,则称该序列是可图的. 2,判定过程: (1)对当前数列排序,使其呈非递增序列 (2)从…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6076   Accepted: 2636   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1,x2, ...,…
题目链接:http://poj.org/problem?id=1659 思路:  havel算法的应用: (1)对序列从大到小进行排序. (2)设最大的度数为 t ,把最大的度数置0,然后把最大度数后(不包括自己)的 t 个度数分别减1(意思就是把度数最大的点与后几个点进行连接) (3)如果序列中出现了负数,证明无法构成.如果序列全部变为0,证明能构成,跳出循环.前两点不出现,就跳回第一步! 简单例子: 4 4 3 3 2 2 第二步后0 3 2 2 1 2 排完续后3 2 2 2 1 0 第二…
题目:http://poj.org/problem?id=3259 题意:主要就是构造图, 然后判断,是否存在负图,可以回到原点 /* 2 3 3 1 //N, M, W 1 2 2 1 3 4 2 3 1 3 1 3 //虫洞 3 2 1 //N, M, W 1 2 3 2 3 4 3 1 8 */ #include <iostream> #include <cstring> using namespace std; + + ) * + ; + ; int N, M, W; //…
题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化.简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况. #include <cstdi…
题意:我们常根据无向边来计算每个节点的度,现在反过来了,已知每个节点的度,问是否可图,若可图,输出一种情况. 分析:这是一道定理题,只要知道可图定理,就是so easy了  可图定理:对每个节点的度从大到小排序,取第一个(最大)的度的节点,依次与其后(度)的节点连边,每连一条边,对应的度减1.然后重新排序,重复以上步骤,若度出现负值,则不可图.(若n个点中,某点的度>=n,那么也是不可能的) #include<cstdio> #include<cstring> #includ…
http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6050   Accepted: 2623   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和…
题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit: 5000MS Memory Limit: 128000K Description You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possi…
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图的要求是所有顶点的度数为偶数. 但不管是那个,顶点的度数若是奇数,那都是不能构成的. 这道题目是非常典型的混合图欧拉回路问题,对于双向边,我们先随便定个向,然后就这样先记录好每个顶点的入度和出度. 如果有顶点的度数为奇数,可以直接得出结论,是不能构成欧拉回路的. 那么,如果都是偶数呢? 因为还会存在…
题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do some firings. You’re now simply too mad to give response to questions like “Don’t you think it is an even more stupid decisio…
题目链接: http://poj.org/problem?id=3687 要逆向建图,输入的时候要判重边,找入度为0的点的时候要从大到小循环,尽量让编号大的先入栈,输出的时候注意按编号的顺序输出重量,不是按重量大小输出编号.. 题目确实很简单,但是感觉很经典. #include <stdio.h> #include <string.h> #include <stack> using namespace std; ][], vis[]; ], weight[]; stac…
意甲冠军  中国 依据Havel-Hakimi定理构图即可咯  先把顶点按度数从大到小排序  可图的话  度数大的顶点与它后面的度数个顶点相连肯定是满足的  出现了-1就说明不可图了 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 20; int mat[N][N], ord[N]; bool cmp(int i, int j) { ret…
Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N…
题意: 给你一个数列, 判断是否可以构成一个图, 可以则输出 构成图的一种方式 构图根据 Havel-Hakimi定理来构图 (在排序的时候注意 节点下标会变化, 故用结构体) #include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; ; int Map[maxn][maxn]; struct Node { int val, p…
题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y…
任意门:http://poj.org/problem?id=3635 Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8388   Accepted: 2734 Description After going through the receipts from your car trip through Europe this summer, you realised that the gas pri…
题意:要开启一扇门,n个单词是密码,n个单词中,如果一个单词的首字母和前一个单词的尾字母相同,并且每个单词都能这么连起来且只用一次,则门可以开启,否则不能开启,现给出单词,判断门是否可以开. 有向图欧拉通路充要条件:D为有向图,D的基图连通,并且所有顶点的出度与入度都相等:或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1. 有向图欧拉回路充要条件:当D的所有顶点的出.入度都相等时,D中存在有向欧拉回路. 思路:一个单词关键…
#include<cstdio> #include<cstring> #include<vector> #include<queue> using namespace std; const int maxn=100+10; int n,m; vector<int> G[maxn];//G[i]表示i节点所指向的所有其他点 int in[maxn];//节点入度 bool topo()//判断该图是否可拓扑排序 { queue<int>…
题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0…
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化. 可图化的判定为:$d_1+d_2+ \cdots +d_n=0(mod2)$.即把奇数度的点配对,剩下的变为自环.可简单图化的判定,即Havel-Hakimi定理: 我们把序列$D$变换为非…
题目大意:询问是否在家里装一个监视器就可以监控所有的角落. 分析:赤裸裸的判断多边形内核题目. 代码如下: #include<iostream> #include<string.h> #include<stdio.h> #include<algorithm> #include<math.h> #include<queue> using namespace std; ; ; ; int Sign(double t) { if(t >…
题目大意:首先给一个圆的半径和圆心,然后给一个多边形的所有点(多边形按照顺时针或者逆时针给的),求,这个多边形是否是凸多边形,如果是凸多边形在判断这个圆是否在这个凸多边形内.   分析:判断凸多边形可以使用相邻的三个点叉积判断,因为不知道顺时针还是逆时针,所以叉积如果有有整数和负数,那么一定不是凸多边形(注意允许多多点在一条线段上).判断圆在凸多边形首先要判断圆心是否在多边形内,如果在多边形内,再次判断圆心到达到变形每条边的最短距离,如果小于半径就是不合法.ps:一道好题,通过这个题学会了不少东…