传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$排序,询问按照$m$排序 然后跑一遍背包,如果$dp[q[i].k]>q[i].s+q[i].m$,即存在方案使得$c$的和为$q[i].k$且所有的$b$都大于$q[i].s+q[i].m$,那么这个询问就是可行的 但这个时间复杂度……我实在不明白为什么它能跑出来……而且好像还很快的样子……明明理…
洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的节点\(0\)其实就可以当做一个LCA,从节点\(0\)开始dp. 状态定义:\(dp[x][m]\)x节点,选则m课,获得的最大学分 决策时,类比背包,遍历每一个状态,用儿子的状态更新 dp转移方程(已优化一维): \[ dp[x][i] = max{dp[x][i-j]+dp[son(x)][j…
题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i\) 的背包的方案数,两个方案不同当且仅当存在某一个物品的选取数量不同. 你需要对 \(i\in [1,m]\) 回答,答案对 \(998,244,353\) 取模. 题解: 对于一个体积为 \(v\) 的物品,它装满容量为 \(x\) 的背包的方案数序列为 \(a_x=[v|x]\). 例如 \(…
题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能获得尽量多的收益呢?作为一名大神犇,他轻而易举的解决了这个问题. 然而,就在他出发前,他又收到了一批奇货.这些货共有m件,第i件的价值Yi与分配的体积Xi之间的关系为:Yi=ai*Xi^2+bi*Xi+ci.这是件好事,但小S却不知道怎么处理了,于是他找到了一位超级神犇(也就是你),请你帮他解决这个…
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\)的物品: \[f(x)=1+x^v+x^{2v}+\cdots +x^{kv}+\cdots \] 那么答案\(F(x)\)就是每个物品的\(f\)卷起来: \[F(x)=\prod\limits_{i=1}^{n}f_i(x)=\prod\limits_{i=1}^{n}\frac{1}{1-x^…
[题目描述:] 约翰遭受了重大的损失:蟑螂吃掉了他所有的干草,留下一群饥饿的牛.他乘着容量为C(1≤C≤50000)个单位的马车,去顿因家买一些干草. 顿因有H(1≤H≤5000)包干草,每一包都有它的体积Vi(l≤Vi≤C).约翰只能整包购买, 他最多可以运回多少体积的干草呢? [输入格式:] Line 1: Two space-separated integers: C and H Lines 2..H+1: Each line describes the volume of a singl…
[题目描述:] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. [输入格式:] 输入一个正整数S. [输出格式:] 输出最大的约数之和. [算法分析:] 01背包,每个数的约数和为其价值,数的大小为其花费 注意1的价值应该为0 [Code:] #include<iostream> #include<cstdio> using namespace std; int n, v[1001], f[1001]; int work(int x) { if(x =…
题目大意:求解 0-1 背包前 K 优解的和. 题解:首先,可知对于状态 \(dp[j]\) 来说,能够转移到该状态的只有 \(dp[j],dp[j-w[i]]\).对于 K 优解来说,只需对状态额外增加一个维度即可.接着,考虑状态转移的过程,即:需要从 \(dp[j][1...k]\rightarrow dp[j][1...k],dp[j-w[i]][1...k]\rightarrow dp[j][1...k]\),可以考虑每次取出两堆数中的最大值进行比较,取较大的给当前状态,时间复杂度较高.…
题目链接:https://www.luogu.org/problemnew/show/P1757#sub 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少. 输入输出格式 输入格式: 两个数m,n,表示一共有n件物品,总重量为m 接下来n行,每行3个数ai,bi,ci,表示物品的重量,利用价值,所属组数 输出格式: 一个数,最大的利用价值 输入输出样例 输入样例#1:…
题目链接(卡常背包) 朴素的多重背包是: \(f[i][j] = \max\{ f[i-1][j-k*v[i]]+k*w[i] \}\),复杂度 \(O(nV*\sum num_i)\) 可以发现求\(\max\)时有很多值是被重复枚举过的 换一种方程表示形式,对于每个\(v[i]\),设\(j=K*v[i]+r,\quad K=j/v[i],\quad r=j\%v[i]\),即按照\(\%v[i]\)的余数分别进行dp(第二层枚举余数\(r\)) 再枚举\(k=0\sim K-1\)(去掉\…